Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Qual ; 43(3): 895-907, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602818

RESUMO

Nitrogen (N) use in intensive agriculture can degrade groundwater resources. However, considerable time lags between groundwater recharge and extraction complicate source attribution and remedial responses. We construct a historic N mass balance of two agricultural regions of California to understand trends and drivers of past and present N loading to groundwater (1945-2005). Changes in groundwater N loading result from historic changes in three factors: the extent of agriculture (cropland area and livestock herd increased 120 and 800%, respectively), the intensity of agriculture (synthetic and manure waste effluent N input rates increased by 525 and 1500%, respectively), and the efficiency of agriculture (crop and milk production per unit of N input increased by 25 and 19%, respectively). The net consequence has been a greater-than-order-of-magnitude increase in nitrate (NO) loading over the time period, with 163 Gg N yr now being leached to groundwater from approximately 1.3 million ha of farmland (not including alfalfa [ L.]). Meeting safe drinking water standards would require NO leaching reductions of over 70% from current levels through reductions in excess manure applications, which accounts for nearly half of all groundwater N loading, and through synthetic N management improvements. This represents a broad challenge given current economic and technical conditions of California farming if farm productivity is to be maintained. The findings illustrate the growing tension-characteristic of agricultural regions globally-between intensifying food, feed, fiber, and biofuel production and preserving clean water.

2.
IEEE Comput Graph Appl ; 43(3): 36-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030817

RESUMO

The Internet of Food (IoF) is an emerging field in smart foodsheds, involving the creation of a knowledge graph (KG) about the environment, agriculture, food, diet, and health. However, the heterogeneity and size of the KG present challenges for downstream tasks, such as information retrieval and interactive exploration. To address those challenges, we propose an interactive knowledge and learning environment (IKLE) that integrates three programming and modeling languages to support multiple downstream tasks in the analysis pipeline. To make IKLE easier to use, we have developed algorithms to automate the generation of each language. In addition, we collaborated with domain experts to design and develop a dataflow visualization system, which embeds the automatic language generations into components and allows users to build their analysis pipeline by dragging and connecting components of interest. We have demonstrated the effectiveness of IKLE through three real-world case studies in smart foodsheds.

3.
PLoS One ; 10(6): e0131888, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121264

RESUMO

How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.


Assuntos
Nitrogênio/análise , Agricultura Orgânica , Solo/química , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Raízes de Plantas/metabolismo
4.
PLoS One ; 10(6): e0128752, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26065899

RESUMO

Understanding how to source agricultural raw materials sustainably is challenging in today's globalized food system given the variety of issues to be considered and the multitude of suggested indicators for representing these issues. Furthermore, stakeholders in the global food system both impact these issues and are themselves vulnerable to these issues, an important duality that is often implied but not explicitly described. The attention given to these issues and conceptual frameworks varies greatly--depending largely on the stakeholder perspective--as does the set of indicators developed to measure them. To better structure these complex relationships and assess any gaps, we collate a comprehensive list of sustainability issues and a database of sustainability indicators to represent them. To assure a breadth of inclusion, the issues are pulled from the following three perspectives: major global sustainability assessments, sustainability communications from global food companies, and conceptual frameworks of sustainable livelihoods from academic publications. These terms are integrated across perspectives using a common vocabulary, classified by their relevance to impacts and vulnerabilities, and categorized into groups by economic, environmental, physical, human, social, and political characteristics. These issues are then associated with over 2,000 sustainability indicators gathered from existing sources. A gap analysis is then performed to determine if particular issues and issue groups are over or underrepresented. This process results in 44 "integrated" issues--24 impact issues and 36 vulnerability issues--that are composed of 318 "component" issues. The gap analysis shows that although every integrated issue is mentioned at least 40% of the time across perspectives, no issue is mentioned more than 70% of the time. A few issues infrequently mentioned across perspectives also have relatively few indicators available to fully represent them. Issues in the impact framework generally have fewer gaps than those in the vulnerability framework.


Assuntos
Conservação dos Recursos Naturais , Agricultura , Humanos , Cooperação Internacional
5.
Carbon Balance Manag ; 6(1): 11, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22070870

RESUMO

BACKGROUND: Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression. RESULTS: Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively. CONCLUSIONS: This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA