Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 187: 106307, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739136

RESUMO

Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aß plaques, immunostaining revealed that both intracellular Aß1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.

2.
Small ; 18(39): e2201401, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35978444

RESUMO

The human brain and central nervous system (CNS) present unique challenges in drug development for neurological diseases. One major obstacle is the blood-brain barrier (BBB), which hampers the effective delivery of therapeutic molecules into the brain while protecting it from blood-born neurotoxic substances and maintaining CNS homeostasis. For BBB research, traditional in vitro models rely upon Petri dishes or Transwell systems. However, these static models lack essential microenvironmental factors such as shear stress and proper cell-cell interactions. To this end, organ-on-a-chip (OoC) technology has emerged as a new in vitro modeling approach to better recapitulate the highly dynamic in vivo human brain microenvironment so-called the neural vascular unit (NVU). Such BBB-on-a-chip models have made substantial progress over the last decade, and concurrently there has been increasing interest in modeling various neurological diseases such as Alzheimer's disease and Parkinson's disease using OoC technology. In addition, with recent advances in other scientific technologies, several new opportunities to improve the BBB-on-a-chip platform via multidisciplinary approaches are available. In this review, an overview of the NVU and OoC technology is provided, recent progress and applications of BBB-on-a-chip for personalized medicine and drug discovery are discussed, and current challenges and future directions are delineated.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Transporte Biológico , Encéfalo , Humanos , Dispositivos Lab-On-A-Chip
3.
Nanomedicine ; 32: 102332, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181273

RESUMO

Human diabetic corneas develop delayed wound healing, epithelial stem cell dysfunction, recurrent erosions, and keratitis. Adenoviral gene therapy modulating c-Met, cathepsin F and MMP-10 normalized wound healing and epithelial stem cells in organ-cultured diabetic corneas but showed toxicity in stem cell-enriched cultured limbal epithelial cells (LECs). For a safer treatment, we engineered a novel nanobiopolymer (NBC) that carried antisense oligonucleotide (AON) RNA therapeutics suppressing cathepsin F or MMP-10, and miR-409-3p that inhibits c-Met. NBC was internalized by LECs through transferrin receptor (TfR)-mediated endocytosis, inhibited cathepsin F or MMP-10 and upregulated c-Met. Non-toxic NBC modulating c-Met and cathepsin F accelerated wound healing in diabetic LECs and organ-cultured corneas vs. control NBC. NBC treatment normalized levels of stem cell markers (keratins 15 and 17, ABCG2, and ΔNp63), and signaling mediators (p-EGFR, p-Akt and p-p38). Non-toxic nano RNA therapeutics thus present a safe alternative to viral gene therapy for normalizing diabetic corneal cells.


Assuntos
Córnea/patologia , Diabetes Mellitus/patologia , Células Epiteliais/patologia , Nanopartículas/química , Polímeros/química , RNA/uso terapêutico , Células-Tronco/patologia , Cicatrização , Adenoviridae/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Sobrevivência Celular , Células Cultivadas , Córnea/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas/ultraestrutura , Oligonucleotídeos Antissenso/farmacologia , RNA/farmacologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
4.
Nanomedicine ; 13(2): 631-639, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27520726

RESUMO

HER2+ breast cancer is one of the most aggressive forms of breast cancer. The new polymalic acid-based mini nanodrug copolymers are synthesized and specifically characterized to inhibit growth of HER2+ breast cancer. These mini nanodrugs are highly effective and in the clinic may substitute for trastuzumab (the marketed therapeutic antibody) and antibody-targeted nanobioconjugates. Novel mini nanodrugs are designed to have slender shape and small size. HER2+ cells were recognized by the polymer-attached trastuzumab-mimetic 12-mer peptide. Synthesis of the nascent cell-transmembrane HER2/neu receptors by HER2+ cells was inhibited by antisense oligonucleotides that prevented cancer cell proliferation and significantly reduced tumor size by more than 15 times vs. untreated control or PBS-treated group. We emphasize that the shape and size of mini nanodrugs can enhance penetration of multiple bio-barriers to facilitate highly effective treatment. Replacement of trastuzumab by the mimetic peptide favors reduced production costs and technical efforts, and a negligible immune response.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2 , Trastuzumab/farmacocinética , Anticorpos Monoclonais Humanizados/administração & dosagem , Linhagem Celular Tumoral , Humanos , Nanopartículas/química , Peptídeos/uso terapêutico , Trastuzumab/administração & dosagem
5.
Int J Mol Sci ; 16(4): 8607-20, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25894227

RESUMO

Multifunctional polymer nanoconjugates containing multiple components show great promise in cancer therapy, but in most cases complete analysis of each component is difficult. Polymalic acid (PMLA) based nanoconjugates have demonstrated successful brain and breast cancer treatment. They consist of multiple components including targeting antibodies, Morpholino antisense oligonucleotides (AONs), and endosome escape moieties. The component analysis of PMLA nanoconjugates is extremely difficult using conventional spectrometry and HPLC method. Taking advantage of the nature of polyester of PMLA, which can be cleaved by ammonium hydroxide, we describe a method to analyze the content of antibody and AON within nanoconjugates simultaneously using SEC-HPLC by selectively cleaving the PMLA backbone. The selected cleavage conditions only degrade PMLA without affecting the integrity and biological activity of the antibody. Although the amount of antibody could also be determined using the bicinchoninic acid (BCA) method, our selective cleavage method gives more reliable results and is more powerful. Our approach provides a new direction for the component analysis of polymer nanoconjugates and nanoparticles.


Assuntos
Malatos/química , Nanoconjugados/química , Polímeros/química , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Cinética , Trastuzumab/química
6.
Biomacromolecules ; 15(6): 2049-57, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24825478

RESUMO

Herein we designed and characterized films composed of naturally derived materials for controlled release of proteins. Traditional drug delivery strategies rely on synthetic or semisynthetic materials or utilize potentially denaturing assembly conditions that are not optimal for sensitive biologics. Layer-by-layer (LbL) assembly of films uses benign conditions and can generate films with various release mechanisms including hydrolysis-facilitated degradation. These use components such as synthetic polycations that degrade into non-natural products. Herein we report the use of a naturally derived, biocompatible and degradable polyanion, poly(ß-l-malic acid), alone and in combination with chitosan in an LbL film, whose degradation products of malic acid and chitosan are both generally recognized as safe (GRAS) by the FDA. We have found that films based on this polyanion have shown sustained release of a model protein, lysozyme that can be timed from tens of minutes to multiple days through different film architectures. We also report the incorporation and release of a clinically used biologic, basic fibroblast growth factor (bFGF), which demonstrates the use of this strategy as a platform for controlled release of various biologics.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Malatos/química , Muramidase/química , Polímeros/química , Animais , Quitosana/metabolismo , Preparações de Ação Retardada/química , Preparações de Ação Retardada/metabolismo , Malatos/metabolismo , Camundongos , Muramidase/metabolismo , Células NIH 3T3 , Polímeros/metabolismo
7.
Angew Chem Int Ed Engl ; 53(31): 8093-8, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24938739

RESUMO

Multidrug regimens can sometimes treat recalcitrant diseases when single-drug therapies fail. Recapitulating complex multidrug administration from controlled release films for localized delivery remains challenging because their release kinetics are frequently intertwined, and an initial burst release of each drug is usually uncontrollable. Kinetic control over protein release is demonstrated by cross-linking layer-by-layer films during the assembly process. We used biodegradable and naturally derived components and relied on copper-free click chemistry for bioorthogonal covalent cross-links throughout the film that entrap but do not modify the embedded protein. We found that this strategy restricted the interdiffusion of protein while maintaining its activity. By depositing a barrier layer and a second protein-containing layer atop this construct, we generated well-defined sequential protein release with minimal overlap that follows their spatial distribution within the film.


Assuntos
Proteínas/metabolismo , Cinética
8.
Biochim Biophys Acta ; 1820(3): 291-317, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21851850

RESUMO

BACKGROUND: Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. SCOPE OF REVIEW: In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. MAJOR CONCLUSIONS: Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. GENERAL SIGNIFICANCE: The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. This article is part of a Special Issue entitled Transferrins: molecular mechanisms of iron transport and disorders.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/administração & dosagem , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Receptores da Transferrina/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Transporte/administração & dosagem , Proteínas de Transporte/metabolismo , Sistemas de Liberação de Medicamentos , Vetores Genéticos , Humanos , Ferro/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(42): 18143-8, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921419

RESUMO

Effective treatment of brain neurological disorders such as Alzheimer's disease, multiple sclerosis, or tumors should be possible with drug delivery through blood-brain barrier (BBB) or blood-brain tumor barrier (BTB) and targeting specific types of brain cells with drug release into the cell cytoplasm. A polymeric nanobioconjugate drug based on biodegradable, nontoxic, and nonimmunogenic polymalic acid as a universal delivery nanoplatform was used for design and synthesis of nanomedicine drug for i.v. treatment of brain tumors. The polymeric drug passes through the BTB and tumor cell membrane using tandem monoclonal antibodies targeting the BTB and tumor cells. The next step for polymeric drug action was inhibition of tumor angiogenesis by specifically blocking the synthesis of a tumor neovascular trimer protein, laminin-411, by attached antisense oligonucleotides (AONs). The AONs were released into the target cell cytoplasm via pH-activated trileucine, an endosomal escape moiety. Drug delivery to the brain tumor and the release mechanism were both studied for this nanobiopolymer. Introduction of a trileucine endosome escape unit resulted in significantly increased AON delivery to tumor cells, inhibition of laminin-411 synthesis in vitro and in vivo, specific accumulation in brain tumors, and suppression of intracranial glioma growth compared with pH-independent leucine ester. The availability of a systemically active polymeric drug delivery system that passes through the BTB, targets tumor cells, and inhibits glioma growth gives hope for a successful strategy of glioma treatment. This delivery system with drug release into the brain-specific cell type could be useful for treatment of various brain pathologies.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Malatos/uso terapêutico , Nanopartículas , Polímeros/uso terapêutico , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/patologia , Endossomos/metabolismo , Infusões Intravenosas , Malatos/administração & dosagem , Malatos/farmacocinética , Camundongos , Camundongos Nus , Polímeros/administração & dosagem , Polímeros/farmacocinética
10.
J Control Release ; 361: 636-658, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544515

RESUMO

Delivery of therapeutic substances into the brain poses a significant challenge in the treatment of neurological disorders. This is primarily due to the blood-brain barrier (BBB), which restricts access, alongside the limited stability and distribution of these agents within the brain tissue. Here we demonstrate an efficient delivery of microRNA (miRNA) and antisense RNA preferentially to neurons compared to astroglia in the brain of healthy and Alzheimer's disease mice, via disulfide-linked conjugation with poly(ß-L-malic acid-trileucine)-copolymer a biodegradable, amphiphilic, and multivalent platform. By conjugating a D-configured (D3)-peptide (vector) for specific targeting, highly efficient delivery across the BBB is achieved through the Low-Density Lipoprotein Receptor-Related Protein-1 (LRP-1) transcytosis pathway, amyloid beta (Aß) peptides. Nanodrug distribution was determined by fluorescent labeling and analyzed by microscopy in neurons, astroglia, and in extracellular amyloid plaques typical for Alzheimer's disease. Whereas D-configured BBB-vectors can efficiently target neurons, L-configured (e.g., AP2-peptide) guided vector can only cross BBB but not seem to bind neurons. An analysis of post-injection fluorescence distribution, and RNA-seq followed by real-time PCR validation, confirmed a successful in vivo delivery of morpholino-miRNA-186 nanoconjugates into mouse brain. The size and fluorescence intensity of the intracellular nanodrug particulates were analyzed and verified by a competition with non-fluorescent conjugates. Differentially expressed genes (DEGs) from RNA-seq were identified in the nanodrug injected mice, and the changes of selected DEGs related to Alzheimer's disease were further validated by western blot and real-time PCR. Collectively, these results demonstrated that D3-peptide-conjugated nanopolymer drug is able to achieve neuron-selective delivery of miRNA and can serve as an efficient brain delivery vehicle in Alzheimer's disease (AD) mouse models.


Assuntos
Doença de Alzheimer , MicroRNAs , Ácidos Nucleicos , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Ácidos Nucleicos/uso terapêutico , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Nanoconjugados/uso terapêutico , MicroRNAs/uso terapêutico , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
11.
Int J Mol Sci ; 13(9): 11681-11693, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23109877

RESUMO

Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(ß-l-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.


Assuntos
Antibióticos Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Malatos , Nanoconjugados/química , Polímeros , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Hidrazonas/química , Concentração de Íons de Hidrogênio , Malatos/química , Malatos/farmacocinética , Malatos/farmacologia , Masculino , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia
12.
ACS Nano ; 16(8): 11815-11832, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35961653

RESUMO

The ability to cross the blood-brain barrier (BBB) is critical for targeted therapy of the central nerve system (CNS). Six peptide vectors were covalently attached to a 50 kDa poly(ß-l-malic acid)-trileucine polymer forming P/LLL(40%)/vector conjugates. The vectors were Angiopep-2 (AP2), B6, Miniap-4 (M4), and d-configurated peptides D1, D3, and ACI-89, with specificity for transcytosis receptors low-density lipoprotein receptor-related protein-1 (LRP-1), transferrin receptor (TfR), bee venom-derived ion channel, and Aß/LRP-1 related transcytosis complex, respectively. The BBB-permeation efficacies were substantially increased ("boosted") in vector conjugates of P/LLL(40%). We have found that the copolymer group binds at the endothelial membrane and, by an allosterically membrane rearrangement, exposes the sites for vector-receptor complex formation. The specificity of vectors is indicated by competition experiments with nonconjugated vectors. P/LLL(40%) does not function as an inhibitor, suggesting that the copolymer binding site is eliminated after binding of the vector-nanoconjugate. The two-step mechanism, binding to endothelial membrane and allosteric exposure of transcytosis receptors, is supposed to be an integral feature of nanoconjugate-transcytosis pathways. In vivo brain delivery signatures of the nanoconjugates were recapitulated in mouse brains of normal, tumor (glioblastoma), and Alzheimer's disease (AD) models. BBB permeation of the tumor was most efficient, followed by normal and then AD-like brain. In tumor-bearing and normal brains, AP2 was the top performing vector; however, in AD models, D3 and D1 peptides were superior ones. The TfR vector B6 was equally efficient in normal and AD-model brains. Cross-permeation efficacies are manifested through modulated vector coligation and dosage escalation such as supra-linear dose dependence and crossover transcytosis activities.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/patologia , Nanoconjugados , Transcitose , Peptídeos/química , Polímeros/farmacologia , Peptídeos beta-Amiloides/metabolismo
13.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34835760

RESUMO

Research has increasingly focused on the delivery of high, often excessive amounts of drugs, neglecting negative aspects of the carrier's physical preconditions and biocompatibility. Among them, little attention has been paid to "small but beautiful" design of vehicle and multiple cargo to achieve effortless targeted delivery into deep tissue. The design of small biopolymers for deep tissue targeted delivery of multiple imaging agents and therapeutics (mini-nano carriers) emphasizes linear flexible polymer platforms with a hydrodynamic diameter of 4 nm to 10 nm, geometrically favoring dynamic juxtaposition of ligands to host receptors, and economic drug content. Platforms of biodegradable, non-toxic poly(ß-l-malic acid) of this size carrying multiple chemically bound, optionally nature-derived or synthetic affinity peptides and drugs for a variety of purposes are described in this review with specific examples. The size, shape, and multiple attachments to membrane sites accelerate vascular escape and fast blood clearance, as well as the increase in medical treatment and contrasts for tissue imaging. High affinity antibodies routinely considered for targeting, such as the brain through the blood-brain barrier (BBB), are replaced by moderate affinity binding peptides (vectors), which penetrate at high influxes not achievable by antibodies.

14.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835657

RESUMO

Glioblastoma (GBM) is the most prevalent primary brain cancer in the pediatric and adult population. It is known as an untreatable tumor in urgent need of new therapeutic approaches. The objective of this work was to develop multifunctional nanomedicines to treat GBM in clinical practice using combination therapy for several targets. We developed multifunctional nanopolymers (MNPs) based on a naturally derived biopolymer, poly(ß-L-malic) acid, which are suitable for central nervous system (CNS) treatment. These MNPs contain several anticancer functional moieties with the capacity of crossing the blood-brain barrier (BBB), targeting GBM cells and suppressing two important molecular markers, tyrosine kinase transmembrane receptors EGFR/EGFRvIII and c-Myc nuclear transcription factor. The reproducible syntheses of MNPs where monoclonal antibodies are replaced with AP-2 peptide for effective BBB delivery were presented. The active anticancer inhibitors of mRNA/protein syntheses were Morpholino antisense oligonucleotides (AONs). Two ways of covalent AON-polymer attachments with and without disulfide bonds were explored. These MNPs bearing AONs to EGFR/EGFRvIII and c-Myc, as well as in a combination with the polymer-attached checkpoint inhibitor anti-PD-1 antibody, orchestrated a multi-pronged attack on intracranial mouse GBM to successfully block tumor growth and significantly increase survival of brain tumor-bearing animals.

15.
Pharm Res ; 27(11): 2317-29, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20387095

RESUMO

PURPOSE: Temozolomide (TMZ) is a pro-drug releasing a DNA alkylating agent that is the most effective drug to treat glial tumors when combined with radiation. TMZ is toxic, and therapeutic dosages are limited by severe side effects. Targeted delivery is thus needed to improve efficiency and reduce non-tumor tissue toxicity. METHODS: Multifunctional targetable nanoconjugates of TMZ hydrazide were synthesized using poly(ß-L-malic acid) platform, which contained a targeting monoclonal antibody to transferrin receptor (TfR), trileucine (LLL), for pH-dependent endosomal membrane disruption, and PEG for protection. RESULTS: The water-soluble TMZ nanoconjugates had hydrodynamic diameters in the range of 6.5 to 14.8 nm and ζ potentials in the range of -6.3 to -17.7 mV. Fifty percent degradation in human plasma was observed in 40 h at 37°C. TMZ conjugated with polymer had a half-life of 5-7 h, compared with 1.8 h for free TMZ. The strongest reduction of human brain and breast cancer cell viability was obtained by versions of TMZ nanoconjugates containing LLL and anti-TfR antibody. TMZ-resistant cancer cell lines were sensitive to TMZ nanoconjugate treatment. CONCLUSIONS: TMZ-polymer nanoconjugates entered the tumor cells by receptor-mediated endocytosis, effectively reduced cancer cell viability, and can potentially be used for targeted tumor treatment.


Assuntos
Antineoplásicos/administração & dosagem , Dacarbazina/análogos & derivados , Malatos/química , Nanopartículas , Polímeros/química , Linhagem Celular Tumoral , Dacarbazina/administração & dosagem , Humanos , Lipossomos , Peso Molecular , Temozolomida
16.
J Control Release ; 320: 45-62, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31923537

RESUMO

Magnetic nanoparticles in general, and iron oxide nanoparticles in particular, have been studied extensively during the past 20 years for numerous biomedical applications. The main applications of these nanoparticles are in magnetic resonance imaging (MRI), magnetic targeting, gene and drug delivery, magnetic hyperthermia for tumor treatment, and manipulation of the immune system by macrophage polarization for cancer treatment. Recently, considerable attention has been paid to magnetic particle imaging (MPI) because of its better sensitivity compared to MRI. In recent years, MRI and MPI have been combined as a dual or multimodal imaging method to enhance the signal in the brain for the early detection and treatment of brain pathologies. Because magnetic and iron oxide nanoparticles are so diverse and can be used in multiple applications such as imaging or therapy, they have attractive features for brain delivery. However, the greatest limitations for the use of MRI/MPI for imaging and treatment are in brain delivery, with one of these limitations being the brain-blood barrier (BBB). This review addresses the current status, chemical compositions, advantages and disadvantages, toxicity and most importantly the future directions for the delivery of iron oxide based substances across the blood-brain barrier for targeting, imaging and therapy of primary and metastatic tumors of the brain.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Compostos Férricos , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética
17.
Int J Nanomedicine ; 15: 3057-3070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431501

RESUMO

BACKGROUND: Position of gadolinium atom(s) plays a key role in contrast enhancement of gadolinium-based contrast agents. To gain a better understanding of effects of distance of gadolinium in relation to the nanoconjugate platform, we designed and synthesized single- and multi-arm ("star") gadolinium conjugates equipped with antibody and peptides for targeting. The contrast agents were studied for their tumor imaging performance in a glioma mouse model. MATERIALS AND METHODS: Antibody- and peptide-targeted nano contrast agents (NCAs) were synthesized using polymalic acid platforms of different sizes. Gadolinium-DOTA and intermediates were attached as amides and targeting agents such as antibodies and peptides as thioethers. For in vivo experiments, we used human U87MG xenografts as glioma models. Magnetic resonance imaging (MRI) was performed on a Bruker BioSpec 94/20USR 9.4 T small-animal scanner. Delivery of contrast agents across the blood-brain barrier was studied by fluorescent microscopy. RESULTS: All contrast agents accumulated into tumor and showed composition-dependent imaging performance. Peptide-targeted mini-NCAs had hydrodynamic diameters in the range 5.2-9.4 nm and antibody-targeted NCAs had diameters in the range 15.8-20.5 nm. Zeta potentials were in the range of -5.4--8.2 mV and -4.6--8.8 mV, respectively. NCAs showed superior relaxivities compared to MultiHance at 9.4 T. The signal enhancement indicated maximum accumulation in tumor 30-60 minutes after intravenous injection of the mouse tail vein. Only targeted NCAs were retained in tumor for up to 3 hours and displayed contrast enhancement. CONCLUSION: The novel targeted NCAs with star-PEG features displayed improved relaxivity and greater contrast compared with commercial MultiHance contrast agent. The enhancement by mini-NCAs showed clearance of tumor contrast after 3 hours providing a suitable time window for tumor diagnosis in clinics. The technology provides a great tool with the promise of differential MRI diagnosis of brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Glioblastoma/diagnóstico por imagem , Compostos Heterocíclicos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/administração & dosagem , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , Modelos Animais de Doenças , Feminino , Humanos , Meglumina/administração & dosagem , Meglumina/análogos & derivados , Meglumina/farmacocinética , Camundongos Nus , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Compostos Organometálicos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
ACS Nano ; 13(2): 1253-1271, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30633492

RESUMO

One of the major problems facing the treatment of neurological disorders is the poor delivery of therapeutic agents into the brain. Our goal is to develop a multifunctional and biodegradable nanodrug delivery system that crosses the blood-brain barrier (BBB) to access brain tissues affected by neurological disease. In this study, we synthesized a biodegradable nontoxic ß-poly(l-malic acid) (PMLA or P) as a scaffold to chemically bind the BBB crossing peptides Angiopep-2 (AP2), MiniAp-4 (M4), and the transferrin receptor ligands cTfRL and B6. In addition, a trileucine endosome escape unit (LLL) and a fluorescent marker (rhodamine or rh) were attached to the PMLA backbone. The pharmacokinetics, BBB penetration, and biodistribution of nanoconjugates were studied in different brain regions and at multiple time points via optical imaging. The optimal nanoconjugate, P/LLL/AP2/rh, produced significant fluorescence in the parenchyma of cortical layers II/III, the midbrain colliculi, and the hippocampal CA1-3 cellular layers 30 min after a single intravenous injection; clearance was observed after 4 h. The nanoconjugate variant P/LLL/rh lacking AP2, or the variant P/AP2/rh lacking LLL, showed significantly less BBB penetration. The LLL moiety appeared to stabilize the nanoconjugate, while AP2 enhanced BBB penetration. Finally, nanoconjugates containing the peptides M4, cTfRL, and B6 displayed comparably little and/or inconsistent infiltration of brain parenchyma, likely due to reduced trans-BBB movement. P/LLL/AP2/rh can now be functionalized with intra-brain targeting and drug treatment moieties that are aimed at molecular pathways implicated in neurological disorders.


Assuntos
Barreira Hematoencefálica/química , Leucina/farmacocinética , Malatos/farmacocinética , Nanoconjugados/química , Peptídeos/farmacocinética , Polímeros/farmacocinética , Rodaminas/farmacocinética , Animais , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Injeções Intravenosas , Leucina/administração & dosagem , Leucina/química , Malatos/administração & dosagem , Malatos/química , Camundongos , Nanoconjugados/administração & dosagem , Peptídeos/administração & dosagem , Peptídeos/química , Polieletrólitos , Polímeros/administração & dosagem , Polímeros/química , Rodaminas/administração & dosagem , Rodaminas/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA