Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cardiovasc Diabetol ; 21(1): 87, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641964

RESUMO

BACKGROUND: Patients diagnosed with ischemic heart disease (IHD) are becoming increasingly multi-morbid, and studies designed to analyze the full spectrum are few. METHODS: Disease trajectories, defined as time-ordered series of diagnoses, were used to study the temporality of multi-morbidity. The main data source was The Danish National Patient Register (NPR) comprising 7,179,538 individuals in the period 1994-2018. Patients with a diagnosis code for IHD were included. Relative risks were used to quantify the strength of the association between diagnostic co-occurrences comprised of two diagnoses that were overrepresented in the same patients. Multiple linear regression models were then fitted to test for temporal associations among the diagnostic co-occurrences, termed length two disease trajectories. Length two disease trajectories were then used as basis for constructing disease trajectories of three diagnoses. RESULTS: In a cohort of 570,157 IHD disease patients, we identified 1447 length two disease trajectories and 4729 significant length three disease trajectories. These included 459 distinct diagnoses. Disease trajectories were dominated by chronic diseases and not by common, acute diseases such as pneumonia. The temporal association of atrial fibrillation (AF) and IHD differed in different IHD subpopulations. We found an association between osteoarthritis (OA) and heart failure (HF) among patients diagnosed with OA, IHD, and then HF only. CONCLUSIONS: The sequence of diagnoses is important in characterization of multi-morbidity in IHD patients as the disease trajectories. The study provides evidence that the timing of AF in IHD marks distinct IHD subpopulations; and secondly that the association between osteoarthritis and heart failure is dependent on IHD.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Isquemia Miocárdica , Osteoartrite , Estudos de Coortes , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Humanos , Multimorbidade , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/epidemiologia
2.
Lancet Digit Health ; 6(6): e396-e406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38789140

RESUMO

BACKGROUND: Health care is experiencing a drive towards digitisation, and many countries are implementing national health data resources. Although a range of cancer risk models exists, the utility on a population level for risk stratification across cancer types has not been fully explored. We aimed to close this gap by evaluating pan-cancer risk models built on electronic health records across the Danish population with validation in the UK Biobank. METHODS: In this retrospective modelling and validation study, data for model development and internal validation were derived from the following Danish health registries: the Central Person Registry, the Danish National Patient Registry, the death registry, the cancer registry, and full-text medical records from secondary care records in the capital region. The development data included adults aged 16-86 years without previous malignant cancers in the time period from Jan 1, 1995, to Dec 31, 2014. The internal validation period was from Jan 1, 2015, to April 10, 2018, and the data included all adults without a previous indication of cancer aged 16-75 years on Dec 31, 2014. The external validation cohort from the UK Biobank included all adults without a previous indication of cancer aged 50-75 years. We used time-dependent Bayesian Cox hazard models built on the combined medical history of Danish individuals. A set of 1392 covariates from available clinical disease trajectories, text-mined basic health factors, and family histories were used to train predictive models of 20 major cancer types. The models were validated on cancer incidence between 2015 and 2018 across Denmark and on individuals in the UK Biobank. The primary outcomes were discrimination and calibration performance. FINDINGS: From the Danish registries, we included 6 732 553 individuals covering 60 million hospital visits, 90 million diagnoses, and a total of 193 million life-years between Jan 1, 1978, and April 10, 2018. Danish registry data covering the period from Jan 1, 2015, to April 10, 2018, were used to internally validate risk models, containing a total of 4 248 491 individuals who remained at risk of a primary malignant cancer diagnosis and 67 401 cancer cases recorded. For the external validation, we evaluated the same time period in the UK Biobank covering 377 004 individuals with 11 486 cancer cases. The predictive performance of the models on Danish data showed good discrimination (concordance index 0·81 [SD 0·08], ranging from 0·66 [95% CI 0·65-0·67] for cervix uteri cancer to 0·91 [0·90-0·92] for liver cancer). Performance was similar on the UK Biobank in a direct transfer when controlling for shifts in the age distribution (concordance index 0·66 [SD 0·08], ranging from 0·55 [95% CI 0·44-0·66] for cervix uteri cancer to 0·78 [0·77-0·79] for lung cancer). Cancer risks were associated, in addition to heritable components, with a broad range of preceding diagnoses and health factors. The best overall performance was seen for cancers of the digestive system (oesophageal, stomach, colorectal, liver, and pancreatic) but also thyroid, kidney, and uterine cancers. INTERPRETATION: Data available in national electronic health databases can be used to approximate cancer risk factors and enable risk predictions in most cancer types. Model predictions generalise between the Danish and UK health-care systems. With the emergence of multi-cancer early detection tests, electronic health record-based risk models could supplement screening efforts. FUNDING: Novo Nordisk Foundation and the Danish Innovation Foundation.


Assuntos
Registros Eletrônicos de Saúde , Neoplasias , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Dinamarca/epidemiologia , Feminino , Estudos Retrospectivos , Masculino , Neoplasias/epidemiologia , Adolescente , Medição de Risco/métodos , Adulto Jovem , Idoso de 80 Anos ou mais , Reino Unido/epidemiologia , Sistema de Registros , Teorema de Bayes , Modelos de Riscos Proporcionais , Fatores de Risco
3.
BMC Genom Data ; 24(1): 30, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244984

RESUMO

OBJECTIVES: Allele counts of sequence variants obtained by whole genome sequencing (WGS) often play a central role in interpreting the results of genetic and genomic research. However, such variant counts are not readily available for individuals in the Danish population. Here, we present a dataset with allele counts for sequence variants (single nucleotide variants (SNVs) and indels) identified from WGS of 8,671 (5,418 females) individuals from the Danish population. The data resource is based on WGS data from three independent research projects aimed at assessing genetic risk factors for cardiovascular, psychiatric, and headache disorders. To enable the sharing of information on sequence variation in Danish individuals, we created summarized statistics on allele counts from anonymized data and made them available through the European Genome-phenome Archive (EGA, https://identifiers.org/ega. DATASET: EGAD00001009756 ) and in a dedicated browser, DanMAC5 (available at www.danmac5.dk ). The summary level data and the DanMAC5 browser provide insight into the allelic spectrum of sequence variants segregating in the Danish population, which is important in variant interpretation. DATA DESCRIPTION: Three WGS datasets with an average coverage of 30x were processed independently using the same quality control pipeline. Subsequently, we summarized, filtered, and merged allele counts to create a high-quality summary level dataset of sequence variants.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma/métodos , Genômica , Dinamarca
4.
BMJ Open ; 11(12): e049709, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36070241

RESUMO

PURPOSE: The aim of Copenhagen Hospital Biobank-Cardiovascular Disease Cohort (CHB-CVDC) is to establish a cohort that can accelerate our understanding of CVD initiation and progression by jointly studying genetics, diagnoses, treatments and risk factors. PARTICIPANTS: The CHB-CVDC is a large genomic cohort of patients with CVD. CHB-CVDC currently includes 96 308 patients. The cohort is part of CHB initiated in 2009 in the Capital Region of Denmark. CHB is continuously growing with ~40 000 samples/year. Patients in CHB were included in CHB-CVDC if they were above 18 years of age and assigned at least one cardiovascular diagnosis. Additionally, up-to 110 000 blood donors can be analysed jointly with CHB-CVDC. Linkage with the Danish National Health Registries, Electronic Patient Records, and Clinical Quality Databases allow up-to 41 years of medical history. All individuals are genotyped using the Infinium Global Screening Array from Illumina and imputed using a reference panel consisting of whole-genome sequence data from 8429 Danes along with 7146 samples from North-Western Europe. Currently, 39 539 of the patients are deceased. FINDINGS TO DATE: Here, we demonstrate the utility of the cohort by showing concordant effects between known variants and selected CVDs, that is, >93% concordance for coronary artery disease, atrial fibrillation, heart failure and cholesterol measurements and 85% concordance for hypertension. Furthermore, we evaluated multiple study designs and the validity of using Danish blood donors as part of CHB-CVDC. Lastly, CHB-CVDC has already made major contributions to studies of sick sinus syndrome and the role of phytosterols in development of atherosclerosis. FUTURE PLANS: In addition to genetics, electronic patient records, national socioeconomic and health registries extensively characterise each patient in CHB-CVDC and provides a promising framework for improved understanding of risk and protective variants. We aim to include other measurable biomarkers for example, proteins in CHB-CVDC making it a platform for multiomics cardiovascular studies.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Bancos de Espécimes Biológicos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudos de Coortes , Hospitais , Humanos
5.
Protein Eng Des Sel ; 32(3): 145-151, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31553452

RESUMO

While the field of computational protein design has witnessed amazing progression in recent years, folding properties still constitute a significant barrier towards designing new and larger proteins. In order to assess and improve folding properties of designed proteins, we have developed a genetics-based folding assay and selection system based on the essential enzyme, orotate phosphoribosyl transferase from Escherichia coli. This system allows for both screening of candidate designs with good folding properties and genetic selection of improved designs. Thus, we identified single amino acid substitutions in two failed designs that rescued poorly folding and unstable proteins. Furthermore, when these substitutions were transferred into a well-structured design featuring a complex folding profile, the resulting protein exhibited native-like cooperative folding with significantly improved stability. In protein design, a single amino acid can make the difference between folding and misfolding, and this approach provides a useful new platform to identify and improve candidate designs.


Assuntos
Engenharia de Proteínas/métodos , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Sequência de Aminoácidos , Modelos Moleculares , Mutação , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA