Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Bioinformatics ; 36(19): 4970-4971, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-32702093

RESUMO

MOTIVATION: There are about 600 available genome sequences of acidophilic organisms (grow at a pH < 5) from the three domains of the Tree of Life. Information about acidophiles is scattered over many heterogeneous sites making it extraordinarily difficult to link physiological traits with genomic data. We were motivated to generate a curated, searchable database to address this problem. RESULTS: AciDB 1.0 is a curated database of sequenced acidophiles that enables researchers to execute complex queries linking genomic features to growth data, environmental descriptions and taxonomic information. AVAILABILITY AND IMPLEMENTATION: AciDB 1.0 is freely available online at: http://AciDB.cl. The source code is released under an MIT license at: https://gitlab.com/Hawkline451/acidb/.


Assuntos
Genômica , Metadados , Bases de Dados Factuais , Genoma , Software
2.
Int J Syst Evol Microbiol ; 70(12): 6226-6234, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33112221

RESUMO

The genus Acidihalobacter has three validated species, Acidihalobacter ferrooxydans, Acidihalobacter prosperus and Acidihalobacter aeolinanus, all of which were isolated from Vulcano island, Italy. They are obligately chemolithotrophic, aerobic, acidophilic and halophilic in nature and use either ferrous iron or reduced sulphur as electron donors. Recently, a novel strain was isolated from an acidic, saline drain in the Yilgarn region of Western Australia. Strain F5T has an absolute requirement for sodium chloride (>5 mM) and is osmophilic, growing in elevated concentrations (>1 M) of magnesium sulphate. A defining feature of its physiology is its ability to catalyse the oxidative dissolution of the most abundant copper mineral, chalcopyrite, suggesting a potential role in biomining. Originally categorized as a strain of A. prosperus, 16S rRNA gene phylogeny and multiprotein phylogenies derived from clusters of orthologous proteins (COGS) of ribosomal protein families and universal protein families unambiguously demonstrate that strain F5T forms a well-supported separate branch as a sister clade to A. prosperus and is clearly distinguishable from A. ferrooxydans DSM 14175T and A. aeolinanus DSM14174T. Results of comparisons between strain F5T and the other Acidihalobacter species, using genome-based average nucleotide identity, average amino acid identity, correlation indices of tetra-nucleotide signatures (Tetra) and genome-to-genome distance (digital DNA-DNA hybridization), support the contention that strain F5T represents a novel species of the genus Acidihalobacter. It is proposed that strain F5T should be formally reclassified as Acidihalobacter yilgarnenesis F5T (=DSM 105917T=JCM 32255T).


Assuntos
Ectothiorhodospiraceae/classificação , Genoma Bacteriano , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cobre , DNA Bacteriano/genética , Ferro/metabolismo , Hibridização de Ácido Nucleico , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismo , Austrália Ocidental
3.
Int J Syst Evol Microbiol ; 69(6): 1557-1565, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30835194

RESUMO

Phylogenomic analysis of recently released high-quality draft genome sequences of the halotolerant acidophiles, Acidihalobacter prosperus V6 (=DSM 14174=JCM 32253) and 'Acidihalobacter ferrooxidans' V8 (=DSM 14175=JCM 32254), was undertaken in order to clarify their taxonomic relationship. Sequence based phylogenomic approaches included 16S rRNA gene phylogeny, multi-gene phylogeny from the concatenated alignment of nine selected housekeeping genes and multiprotein phylogeny using clusters of orthologous groups of proteins from ribosomal protein families as well as those from complete sets of markers based on concatenated alignments of universal protein families. Non-sequence based approaches for species circumscription were based on analyses of average nucleotide identity, which was further reinforced by the correlation indices of tetra-nucleotide signatures as well as genome-to-genome distance (digital DNA-DNA hybridization) calculations. The different approaches undertaken in this study for species tree reconstruction resulted in a tree that was phylogenetically congruent, revealing that both micro-organisms are members of separate species of the genus Acidihalobacter. In accordance, it is proposed that A. prosperus V6T (=DSM 14174 T=JCM 32253 T) be formally classified as Acidihalobacter aeolianus sp. nov., and 'Acidihalobacter ferrooxidans' V8T (=DSM 14175 T=JCM 32254 T) as Acidihalobacter ferrooxydans sp. nov., and that both represent the type strains of their respective species.


Assuntos
Ectothiorhodospiraceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ectothiorhodospiraceae/isolamento & purificação , Genoma Bacteriano , Itália , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
J Comput Chem ; 38(7): 467-474, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28114729

RESUMO

The electrostatic potential plays a key role in many biological processes like determining the affinity of a ligand to a given protein target, and they are responsible for the catalytic activity of many enzymes. Understanding the effect that amino acid mutations will have on the electrostatic potential of a protein, will allow a thorough understanding of which residues are the most important in a protein. MutantElec, is a friendly web application for in silico generation of site-directed mutagenesis of proteins and the comparison of electrostatic potential between the wild type protein and the mutant(s), based on the three-dimensional structure of the protein. The effect of the mutation is evaluated using different approach to the traditional surface map. MutantElec provides a graphical display of the results that allows the visualization of changes occurring at close distance from the mutation and thus uncovers the local and global impact of a specific change. © 2017 Wiley Periodicals, Inc.


Assuntos
Simulação por Computador , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Eletricidade Estática , Aminoácidos/química , Aminoácidos/genética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Interface Usuário-Computador
5.
Int J Syst Evol Microbiol ; 65(10): 3641-3644, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26198437

RESUMO

Analysis of phylogenomic metrics of a recently released draft genome sequence of the halotolerant, acidophile 'Thiobacillus prosperus' DSM 5130 indicates that it is not a member of the genus Thiobacillus within the class Betaproteobacteria as originally proposed. Based on data from 16S rRNA gene phylogeny, and analyses of multiprotein phylogeny and average nucleotide identity (ANI), we show that it belongs to a new genus within the family Ectothiorhodospiraceae, for which we propose the name Acidihalobacter gen. nov. In accordance, it is proposed that 'Thiobacillus prosperus' DSM 5130 be named Acidihalobacter prosperus gen. nov., sp. nov. DSM 5130T ( = JCM 30709T) and that it becomes the type strain of the type species of this genus.


Assuntos
Ectothiorhodospiraceae/classificação , Filogenia , Thiobacillus/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
J Comput Aided Mol Des ; 28(11): 1069-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25085083

RESUMO

With advancements in crystallographic technology and the increasing wealth of information populating structural databases, there is an increasing need for prediction tools based on spatial information that will support the characterization of proteins and protein-ligand interactions. Herein, a new web service is presented termed amino acid frequency around ligand (AFAL) for determining amino acids type and frequencies surrounding ligands within proteins deposited in the Protein Data Bank and for assessing the atoms and atom-ligand distances involved in each interaction (availability: http://structuralbio.utalca.cl/AFAL/index.html ). AFAL allows the user to define a wide variety of filtering criteria (protein family, source organism, resolution, sequence redundancy and distance) in order to uncover trends and evolutionary differences in amino acid preferences that define interactions with particular ligands. Results obtained from AFAL provide valuable statistical information about amino acids that may be responsible for establishing particular ligand-protein interactions. The analysis will enable investigators to compare ligand-binding sites of different proteins and to uncover general as well as specific interaction patterns from existing data. Such patterns can be used subsequently to predict ligand binding in proteins that currently have no structural information and to refine the interpretation of existing protein models. The application of AFAL is illustrated by the analysis of proteins interacting with adenosine-5'-triphosphate.


Assuntos
Aminoácidos/química , Proteínas/química , Software , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Sítios de Ligação , Bases de Dados de Proteínas , Internet , Ligantes
7.
Appl Microbiol Biotechnol ; 98(19): 8133-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104030

RESUMO

Extremely acidophilic microorganisms have an optimal pH of <3 and are found in all three domains of life. As metals are more soluble at acid pH, acidophiles are often challenged by very high metal concentrations. Acidophiles are metal-tolerant by both intrinsic, passive mechanisms as well as active systems. Passive mechanisms include an internal positive membrane potential that creates a chemiosmotic gradient against which metal cations must move, as well as the formation of metal sulfate complexes reducing the concentration of the free metal ion. Active systems include efflux proteins that pump metals out of the cytoplasm and conversion of the metal to a less toxic form. Acidophiles are exploited in a number of biotechnologies including biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications.


Assuntos
Ácidos/metabolismo , Bactérias/metabolismo , Biotecnologia , Metais/metabolismo , Bactérias/genética
8.
Res Microbiol ; 175(1-2): 104135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37678513

RESUMO

Extreme acidophiles thrive in acidic environments, confront a multitude of challenges, and demonstrate remarkable adaptability in their metabolism to cope with the ever-changing environmental fluctuations, which encompass variations in temperature, pH levels, and the availability of electron acceptors and donors. The survival and proliferation of members within the Acidithiobacillia class rely on the deployment of transcriptional regulatory systems linked to essential physiological traits. The study of these transcriptional regulatory systems provides valuable insights into critical processes, such as energy metabolism and nutrient assimilation, and how they integrate into major genetic-metabolic circuits. In this study, we examined the transcriptional regulatory repertoires and potential interactions of forty-three Acidithiobacillia complete and draft genomes, encompassing nine species. To investigate the function and diversity of Transcription Factors (TFs) and their DNA Binding Sites (DBSs), we conducted a genome-wide comparative analysis, which allowed us to identify these regulatory elements in representatives of Acidithiobacillia. We classified TFs into gene families and compared their occurrence among all representatives, revealing conservation patterns across the class. The results identified conserved regulators for several pathways, including iron and sulfur oxidation, the main pathways for energy acquisition, providing new evidence for viable regulatory interactions and branch-specific conservation in Acidithiobacillia. The identification of TFs and DBSs not only corroborates existing experimental information for selected species, but also introduces novel candidates for experimental validation. Moreover, these promising candidates have the potential for further extension to new representatives within the class.


Assuntos
Ferro , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ferro/metabolismo , Genômica/métodos , Proteobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
J Virol ; 86(22): 12452-3, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23087115

RESUMO

Development of reproducible genetic tools in the industrially important acidithiobacilli is urgently required. Inducible temperate phages which may be modified in vitro, propagated in suitable hosts, and used to transduce relevant genetic information to other strains and/or species are potentially valuable tools in this field of research. In order to address these current limitations, the genome sequence of an inducible temperate Myoviridae-like bacteriophage from the Acidithiobacillus caldus type strain was annotated and analyzed bioinformatically. Here, we announce the genome sequence of AcaML1 and report major findings from its annotation.


Assuntos
Acidithiobacillus/virologia , Bacteriófagos/genética , Genoma Viral , Biologia Computacional/métodos , DNA Viral , Bases de Dados Genéticas , Genes Virais , Técnicas Genéticas , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA
10.
Appl Environ Microbiol ; 79(7): 2172-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354702

RESUMO

Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu(2+) included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H(2)S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S(0) to Fe(3+) via a respiratory chain that includes a bc(1) complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations.


Assuntos
Acidithiobacillus/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Anaerobiose , Perfilação da Expressão Gênica , Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Oxirredução , Proteoma , Transcriptoma
11.
Res Microbiol ; 174(3): 104008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36395968

RESUMO

Ten strains of extremely acidophilic bacteria, isolated from different environments form a distinct monophyletic clade within the phylum Firmicutes. Comparison of complete genomes of the proposed type strains confirm that they comprise two genera (proposed names Sulfoacidibacillus and Ferroacidibacillus), and at least three species (Sulfoacidibacillus ferrooxidans, Sulfoacidibacillus thermotolerans and Ferroacidibacillus organovorans). The bacterial strains share some physiological traits, including catalysing the dissimilatory oxidation and reduction of iron, and in being obligately heterotrophic. Both species of Sulfoacidibacillus are also able to oxidise elemental sulfur and tetrathionate. Both S. ferrooxidans and Ferroacidibacillus spp. are mesophilic, while S. thermotolerans isolates are moderate thermophiles. The isolates display different degrees of acid-tolerance: Ferroacidibacillus spp. are the most acid-sensitive while the type strain of S. ferrooxidans grows at pH 0.9. MK7 was detected as the sole menaquinone present in all three nominated type strains, and their peptidoglycans all contain meso-2,6 diaminopimelic acid type A1γ. The chromosomal DNA of the strains examined contain between 44 and 52 mol% G + C. The nominated type strains of the new species are S. ferrooxidans S0ABT (= DSM 105355T = JCM 33225T); S. thermotolerans Y002T (= ATCC TSD-104T = JCM 31946T); F. organovorans SLC66T (= ATCC TSD-103T = JCM 31945T).


Assuntos
Firmicutes , Ferro , Firmicutes/genética , Ácidos , Ácidos Graxos/análise , Enxofre , RNA Ribossômico 16S/genética , Filogenia , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
12.
Front Microbiol ; 14: 1149903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007468

RESUMO

Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, "Ferrovum myxofaciens," and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of "omics" techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.

13.
Environ Microbiol ; 14(7): 1597-611, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22050575

RESUMO

This minireview presents recent advances in our understanding of iron oxidation and homeostasis in acidophilic Bacteria and Archaea. These processes influence the flux of metals and nutrients in pristine and man-made acidic environments such as acid mine drainage and industrial bioleaching operations. Acidophiles are also being studied to understand life in extreme conditions and their role in the generation of biomarkers used in the search for evidence of existing or past extra-terrestrial life. Iron oxidation in acidophiles is best understood in the model organism Acidithiobacillus ferrooxidans. However, recent functional genomic analysis of acidophiles is leading to a deeper appreciation of the diversity of acidophilic iron-oxidizing pathways. Although it is too early to paint a detailed picture of the role played by lateral gene transfer in the evolution of iron oxidation, emerging evidence tends to support the view that iron oxidation arose independently more than once in evolution. Acidic environments are generally rich in soluble iron and extreme acidophiles (e.g. the Leptospirillum genus) have considerably fewer iron uptake systems compared with neutrophiles. However, some acidophiles have been shown to grow as high as pH 6 and, in the case of the Acidithiobacillus genus, to have multiple iron uptake systems. This could be an adaption allowing them to respond to different iron concentrations via the use of a multiplicity of different siderophores. Both Leptospirillum spp. and Acidithiobacillus spp. are predicted to synthesize the acid stable citrate siderophore for Fe(III) uptake. In addition, both groups have predicted receptors for siderophores produced by other microorganisms, suggesting that competition for iron occurs influencing the ecophysiology of acidic environments. Little is known about the genetic regulation of iron oxidation and iron uptake in acidophiles, especially how the use of iron as an energy source is balanced with its need to take up iron for metabolism. It is anticipated that integrated and complex regulatory networks sensing different environmental signals, such as the energy source and/or the redox state of the cell as well as the oxygen availability, are involved.


Assuntos
Acidithiobacillus/metabolismo , Ácidos/química , Compostos Férricos/metabolismo , Ferro/metabolismo , Sideróforos/metabolismo , Acidithiobacillus/genética , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas , Oxirredução , Filogenia
14.
Anal Biochem ; 421(1): 333-5, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22067980

RESUMO

Reporter gene assays are important tools for evaluating gene expression. A frequently used assay measures the activity of ß-galactosidase (ß-gal) expressed from lacZ in plasmid or genomic constructions. Such constructions are often used to interrogate the ability of DNA (query DNA), potentially encoding a transcription factor, to regulate in trans the expression of a promoter fused to the reporter lacZ. Query DNA is frequently inserted into a second plasmid within the α-subunit of ß-gal, interrupting its function. However, this plasmid can induce up-expression of ß-gal even when void of query DNA, leading to confusion between artifact and authentic regulation.


Assuntos
Regulação da Expressão Gênica , Genes Reporter , beta-Galactosidase/genética , Artefatos , Escherichia coli/enzimologia , Escherichia coli/genética , Técnicas Genéticas , Óperon Lac , Modelos Genéticos , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteobactérias , beta-Galactosidase/química
15.
Comp Funct Genomics ; 2012: 678761, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251097

RESUMO

Transposases (Tnps) are enzymes that participate in the movement of insertion sequences (ISs) within and between genomes. Genes that encode Tnps are amongst the most abundant and widely distributed genes in nature. However, they are difficult to predict bioinformatically and given the increasing availability of prokaryotic genomes and metagenomes, it is incumbent to develop rapid, high quality automatic annotation of ISs. This need prompted us to develop a web service, termed TnpPred for Tnp discovery. It provides better sensitivity and specificity for Tnp predictions than given by currently available programs as determined by ROC analysis. TnpPred should be useful for improving genome annotation. The TnpPred web service is freely available for noncommercial use.

16.
Front Microbiol ; 13: 900531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212841

RESUMO

Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2-3) and moderately thermophilic conditions (50-60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including "first line of defense" mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the "second line of defense" where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.

17.
Microbiol Resour Announc ; 11(8): e0027122, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862936

RESUMO

The draft whole-genome sequence of the extremely acidophilic and novel Firmicutes strain S0AB is reported. The genome comprises 3.3 Mbp and has a GC content of 43.72%. In total, 3,240 protein-coding genes, 56 tRNA genes, and 11 rRNA genes were predicted.

18.
Front Microbiol ; 13: 803241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387071

RESUMO

The genome streamlining theory suggests that reduction of microbial genome size optimizes energy utilization in stressful environments. Although this hypothesis has been explored in several cases of low-nutrient (oligotrophic) and high-temperature environments, little work has been carried out on microorganisms from low-pH environments, and what has been reported is inconclusive. In this study, we performed a large-scale comparative genomics investigation of more than 260 bacterial high-quality genome sequences of acidophiles, together with genomes of their closest phylogenetic relatives that live at circum-neutral pH. A statistically supported correlation is reported between reduction of genome size and decreasing pH that we demonstrate is due to gene loss and reduced gene sizes. This trend is independent from other genome size constraints such as temperature and G + C content. Genome streamlining in the evolution of acidophilic bacteria is thus supported by our results. The analyses of predicted Clusters of Orthologous Genes (COG) categories and subcellular location predictions indicate that acidophiles have a lower representation of genes encoding extracellular proteins, signal transduction mechanisms, and proteins with unknown function but are enriched in inner membrane proteins, chaperones, basic metabolism, and core cellular functions. Contrary to other reports for genome streamlining, there was no significant change in paralog frequencies across pH. However, a detailed analysis of COG categories revealed a higher proportion of genes in acidophiles in the following categories: "replication and repair," "amino acid transport," and "intracellular trafficking". This study brings increasing clarity regarding the genomic adaptations of acidophiles to life at low pH while putting elements, such as the reduction of average gene size, under the spotlight of streamlining theory.

19.
Microbiol Resour Announc ; 11(6): e0014922, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575485

RESUMO

We report the draft genome sequence of the Firmicute strain Y002, a facultatively anaerobic, acidophilic bacterium that catalyzes the dissimilatory oxidation of iron and sulfur and the reduction of ferric iron. Analysis of the genome (2.9 Mb; G+C content, 46 mol%) provided insights into its ability to grow in extremely acidic geothermal environments.

20.
J Bacteriol ; 193(24): 7003-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22123759

RESUMO

Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.


Assuntos
Acidithiobacillus thiooxidans/genética , Ácidos/metabolismo , Evolução Molecular , Genoma Bacteriano , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Acidithiobacillus thiooxidans/metabolismo , Sequência de Bases , Mineração , Dados de Sequência Molecular , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA