Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Ther ; 29(1): 191-207, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33022212

RESUMO

The therapeutic effect of retinal gene therapy using CRISPR/Cas9-mediated genome editing and knockout applications is dependent on efficient and safe delivery of gene-modifying tool kits. Recently, transient administration of single guide RNAs (sgRNAs) and SpCas9 proteins delivered as ribonucleoproteins (RNPs) has provided potent gene knockout in vitro. To improve efficacy of CRISPR-based gene therapy, we delivered RNPs containing SpCas9 protein complexed to chemically modified sgRNAs (msgRNAs). In K562 cells, msgRNAs significantly increased the insertion/deletion (indel) frequency (25%) compared with unmodified counterparts leading to robust knockout of the VEGFA gene encoding vascular endothelial growth factor A (96% indels). Likewise, in HEK293 cells, lipoplexes containing varying amounts of RNP and EGFP mRNA showed efficient VEGFA knockout (43% indels) and strong EGFP expression, indicative of efficacious functional knockout using small amounts of RNP. In mice, subretinal injections of equivalent lipoplexes yielded 6% indels in Vegfa of isolated EGFP-positive RPE cells. However, signs of toxicity following delivery of lipoplexes containing high amounts of RNP were observed. Although the mechanism resulting in the varying efficacy remains to be elucidated, our data suggest that a single subretinal injection of RNPs carrying msgRNAs and SpCas9 induces targeted retinal indel formation, thus providing a clinically relevant strategy relying on nonviral delivery of short-lived nuclease activity.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , RNA Guia de Cinetoplastídeos/genética , Retina/metabolismo , Ribonucleoproteínas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Camundongos , Transfecção
2.
Methods Mol Biol ; 1961: 307-328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30912054

RESUMO

Genome editing and knockout by virus-based delivery of CRISPR/Cas9 may provide a new option to cure inherited and acquired ocular diseases. Here we describe development and application of lentivirus-based delivery vectors enabling knockout of the Vegfa gene. We show that Streptococcus pyogenes (Sp) Cas9 and single-guide RNAs (sgRNAs) delivered by such vectors selectively can ablate the vascular endothelial growth factor A (Vegfa) gene in mouse retina following a single administration. These findings may contribute to the development of a new therapeutic path in the treatment of ocular diseases including exudative age-related macular degeneration (AMD).


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Edição de Genes , Terapia Genética , Lentivirus/genética , Camundongos , Camundongos Knockout , Retina/metabolismo , Retina/patologia
3.
Mol Ther Nucleic Acids ; 16: 38-50, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30825671

RESUMO

Vascular endothelial growth factor A (VEGFA) is involved in the pathogenesis of vasoproliferative retinal diseases, such as exudative age-related macular degeneration (AMD). The objective of this study was to investigate whether dual-acting therapy based on the simultaneous expression of anti-VEGFA microRNAs (miRNAs) and the secreted, antiangiogenic protein pigment endothelial-derived factor (PEDF) delivered by adeno-associated virus (AAV) vectors provides improved protection against choroidal neovascularization (CNV). To investigate this, a multigenic AAV vector allowing retina pigment epithelium (RPE)-specific expression of anti-VEGFA miRNAs and PEDF was engineered. Robust expression of PEDF, driven by the RPE-specific vitelliform macular dystrophy 2 promoter, was observed in human cells and in mouse retina. A significant reduction in CNV was observed in a laser-induced CNV mouse model 57 days post-injection of the AAV5 particles conveying either anti-VEGFA miRNA and PEDF dual therapy or anti-VEGFA miRNA monotherapy. Overall, CNV reduction was most prominent in animals receiving dual-acting therapy. In both cases, the reduction in CNV was accompanied by a significant attenuation of VEGFA. In conclusion, the presented data reveal that gene therapy targeting VEGFA via multigenic AAV vectors displays combined efficacy, suggesting that dual-acting therapy is an important tool in future eye gene therapy for the treatment of neovascular ocular diseases, including AMD.

4.
Acta Ophthalmol ; 96(1): 9-23, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28271607

RESUMO

MicroRNAs (miRNAs) are key regulators of gene expression in humans. Overexpression or depletion of individual miRNAs is associated with human disease. Current knowledge suggests that the retina is influenced by miRNAs and that dysregulation of miRNAs as well as alterations in components of the miRNA biogenesis machinery are involved in retinal diseases, including age-related macular degeneration (AMD). Furthermore, recent studies have indicated that the vitreous has a specific panel of circulating miRNAs and that this panel varies according to the specific pathological stress experienced by the retinal cells. MicroRNA (miRNA) profiling indicates subtype-specific miRNA profiles for late-stage AMD highlighting the importance of proper miRNA regulation in AMD. This review will describe the function of important miRNAs involved in inflammation, oxidative stress and pathological neovascularization, the key molecular mechanisms leading to AMD, and focus on dysregulated miRNAs as potential therapeutic targets in AMD.


Assuntos
Perfilação da Expressão Gênica/métodos , Terapia Genética/métodos , MicroRNAs/genética , Epitélio Pigmentado da Retina/patologia , Degeneração Macular Exsudativa , Humanos , MicroRNAs/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Degeneração Macular Exsudativa/genética , Degeneração Macular Exsudativa/metabolismo , Degeneração Macular Exsudativa/terapia
5.
Hum Gene Ther Methods ; 28(4): 222-233, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28817343

RESUMO

Lentivirus-based vectors have been used for the development of potent gene therapies. Here, application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model is presented. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Six days post injection (PI), robust and widespread fluorescent signals of eGFP are already observed in the retina by funduscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration.


Assuntos
Neovascularização de Coroide/terapia , Terapia Genética/métodos , Vetores Genéticos/genética , Lentivirus/genética , Degeneração Macular/terapia , MicroRNAs/genética , Animais , Bestrofinas/genética , Células Cultivadas , Feminino , Vetores Genéticos/administração & dosagem , Injeções Intraoculares , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/administração & dosagem , Regiões Promotoras Genéticas , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Mol Ther Nucleic Acids ; 9: 89-99, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246327

RESUMO

Virus-based gene therapy by CRISPR/Cas9-mediated genome editing and knockout may provide a new option for treatment of inherited and acquired ocular diseases of the retina. In support of this notion, we show that Streptococcus pyogenes (Sp) Cas9, delivered by lentiviral vectors (LVs), can be used in vivo to selectively ablate the vascular endothelial growth factor A (Vegfa) gene in mice. By generating LVs encoding SpCas9 targeted to Vegfa, and in parallel the fluorescent eGFP marker protein, we demonstrate robust knockout of Vegfa that leads to a significant reduction of VEGFA protein in transduced cells. Three of the designed single-guide RNAs (sgRNAs) induce in vitro indel formation at high frequencies (44%-93%). A single unilateral subretinal injection facilitates RPE-specific localization of the vector and disruption of Vegfa in isolated eGFP+ RPE cells obtained from mice five weeks after LV administration. Notably, sgRNA delivery results in the disruption of Vegfa with an in vivo indel formation efficacy of up to 84%. Sequencing of Vegfa-specific amplicons reveals formation of indels, including 4-bp deletions and 2-bp insertions. Taken together, our data demonstrate the capacity of lentivirus-delivered SpCas9 and sgRNAs as a developing therapeutic path in the treatment of ocular diseases, including age-related macular degeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA