Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 602(7898): 590-594, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197616

RESUMO

The sensing of gravity has emerged as a tool in geophysics applications such as engineering and climate research1-3, including the monitoring of temporal variations in aquifers4 and geodesy5. However, it is impractical to use gravity cartography to resolve metre-scale underground features because of the long measurement times needed for the removal of vibrational noise6. Here we overcome this limitation by realizing a practical quantum gravity gradient sensor. Our design suppresses the effects of micro-seismic and laser noise, thermal and magnetic field variations, and instrument tilt. The instrument achieves a statistical uncertainty of 20 E (1 E = 10-9 s-2) and is used to perform a 0.5-metre-spatial-resolution survey across an 8.5-metre-long line, detecting a 2-metre tunnel with a signal-to-noise ratio of 8. Using a Bayesian inference method, we determine the centre to ±0.19 metres horizontally and the centre depth as (1.89 -0.59/+2.3) metres. The removal of vibrational noise enables improvements in instrument performance to directly translate into reduced measurement time in mapping. The sensor parameters are compatible with applications in mapping aquifers and evaluating impacts on the water table7, archaeology8-11, determination of soil properties12 and water content13, and reducing the risk of unforeseen ground conditions in the construction of critical energy, transport and utilities infrastructure14, providing a new window into the underground.

2.
Opt Express ; 30(17): 30001-30011, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242112

RESUMO

We propose and demonstrate a scheme for Doppler compensated optical cavity enhancement of atom interferometers at significantly increased mode diameters. This overcomes the primary limitations in cavity enhancement for atom interferometry, circumventing the cavity linewidth limit and enabling spatial mode filtering, power enhancement, and a large beam diameter simultaneously. This approach combines a magnified linear cavity with an intracavity Pockels cell. The Pockels cell induces a voltage-controlled birefringence allowing the cavity mode frequencies to follow the Raman lasers as they track gravitationally induced Doppler shifts, removing the dominant limitation of current cavity enhanced systems. A cavity is built to this geometry and shown to simultaneously realise Doppler compensation, a 5.8 ± 0.15 mm1/e2 diameter beam waist and an enhancement factor of >5× at a finesse of 35. Tuneable Gouy phase enables the suppression of higher order spatial modes and the avoidance of regions of instability. Atom interferometers will see increased contrast at extended interferometry times along with power enhancement and the reduction of optical aberrations. This is relevant to power constrained applications in quantum technology, alongside the absolute performance requirements of fundamental science.

3.
Opt Lett ; 46(6): 1257-1260, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720161

RESUMO

A method for the agile generation of the optical frequencies required for laser cooling and atom interferometry of rubidium is demonstrated. It relies on fiber Bragg grating technology to filter the output of an electro-optic modulator and was demonstrated in an alignment-free, single-seed, frequency-doubled fiber laser system. The system was capable of frequency switching over a 30 GHz range in less than 40 ns, with ∼0.5W output power and amplitude modulation with a ∼15ns rise/fall time and an extinction ratio exceeding 80 dB. The technology is ideal for enabling high-bandwidth, mobile industrial, and space applications of quantum technologies.

4.
Opt Express ; 26(6): 6542-6553, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609342

RESUMO

A frequency doubled I/Q modulator based optical single-sideband (OSSB) laser system is demonstrated for atomic physics research, specifically for atom interferometry where the presence of additional sidebands causes parasitic transitions. The performance of the OSSB technique and the spectrum after second harmonic generation are measured and analyzed. The additional sidebands are removed with better than 20 dB suppression, and the influence of parasitic transitions upon stimulated Raman transitions at varying spatial positions is shown to be removed beneath experimental noise. This technique will facilitate the development of compact atom interferometry based sensors with improved accuracy and reduced complexity.

5.
Phys Rev Lett ; 119(15): 150403, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077431

RESUMO

Jones-Roberts solitons are the only known class of stable dark solitonic solutions of the nonlinear Schrödinger equation in two and three dimensions. They feature a distinctive elongated elliptical shape that allows them to travel without change of form. By imprinting a triangular phase pattern, we experimentally generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate. We monitor their dynamics, observing that this kind of soliton is indeed not affected by dynamic (snaking) or thermodynamic instabilities, that instead make other classes of dark solitons unstable in dimensions higher than one. Our results confirm the prediction that Jones-Roberts solitons are stable solutions of the nonlinear Schrödinger equation and promote them for applications beyond matter wave physics, like energy and information transport in noisy and inhomogeneous environments.

6.
PLoS One ; 18(7): e0288353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432927

RESUMO

Borehole gravity sensing can be used in a number of applications to measure features around a well, including rock-type change mapping and determination of reservoir porosity. Quantum technology gravity sensors, based on atom interferometry, have the ability to offer increased survey speeds and reduced need for calibration. While surface sensors have been demonstrated in real world environments, significant improvements in robustness and reductions to radial size, weight, and power consumption are required for such devices to be deployed in boreholes. To realise the first step towards the deployment of cold atom-based sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the core package of many cold atom-based systems. The enclosure containing the magneto-optical trap itself had an outer radius of (60 ± 0.1) mm at its widest point and a length of (890 ± 5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50 m deep borehole, to simulate how in-borehole gravity surveys are performed. During the survey, the system generated, on average, clouds of (3.0 ± 0.1) × 105 87Rb atoms with the standard deviation in atom number across the survey observed to be as low as 8.9 × 104.


Assuntos
Gravitação , Pinças Ópticas , Calibragem , Sensação Gravitacional , Interferometria
7.
Sci Adv ; 6(31): eabb6667, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832692

RESUMO

Compact and robust cold atom sources are increasingly important for quantum research, especially for transferring cutting-edge quantum science into practical applications. In this study, we report on a novel scheme that uses a metasurface optical chip to replace the conventional bulky optical elements used to produce a cold atomic ensemble with a single incident laser beam, which is split by the metasurface into multiple beams of the desired polarization states. Atom numbers ~107 and temperatures (about 35 µK) of relevance to quantum sensing are achieved in a compact and robust fashion. Our work highlights the substantial progress toward fully integrated cold atom quantum devices by exploiting metasurface optical chips, which may have great potential in quantum sensing, quantum computing, and other areas.

8.
Sci Rep ; 8(1): 2023, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386536

RESUMO

Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10-10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA