Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Mol Med ; 10(1): 107-120, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138229

RESUMO

The transcriptome needs to be tightly regulated by mechanisms that include transcription factors, enhancers, and repressors as well as non-coding RNAs. Besides this dynamic regulation, a large part of phenotypic variability of eukaryotes is expressed through changes in gene transcription caused by genetic variation. In this study, we evaluate genome-wide structural genomic variants (SVs) and their association with gene expression in the human heart. We detected 3,898 individual SVs affecting all classes of gene transcripts (e.g., mRNA, miRNA, lncRNA) and regulatory genomic regions (e.g., enhancer or TFBS). In a cohort of patients (n = 50) with dilated cardiomyopathy (DCM), 80,635 non-protein-coding elements of the genome are deleted or duplicated by SVs, containing 3,758 long non-coding RNAs and 1,756 protein-coding transcripts. 65.3% of the SV-eQTLs do not harbor a significant SNV-eQTL, and for the regions with both classes of association, we find similar effect sizes. In case of deleted protein-coding exons, we find downregulation of the associated transcripts, duplication events, however, do not show significant changes over all events. In summary, we are first to describe the genomic variability associated with SVs in heart failure due to DCM and dissect their impact on the transcriptome. Overall, SVs explain up to 7.5% of the variation of cardiac gene expression, underlining the importance to study human myocardial gene expression in the context of the individual genome. This has immediate implications for studies on basic mechanisms of cardiac maladaptation, biomarkers, and (gene) therapeutic studies alike.


Assuntos
Cardiomiopatia Dilatada/genética , Regulação da Expressão Gênica , Variação Estrutural do Genoma , RNA/genética , Transcriptoma , Animais , Estudos de Coortes , Humanos , Masculino , Camundongos , MicroRNAs/genética , Miocárdio/metabolismo , Locos de Características Quantitativas , RNA Longo não Codificante/genética , RNA Mensageiro/genética
2.
Clin Res Cardiol ; 106(2): 127-139, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27576561

RESUMO

AIMS: Routine genetic testing in Dilated Cardiomyopathy (DCM) has recently become reality using Next-Generation Sequencing. Several studies have explored the relationship between genotypes and clinical phenotypes to support risk estimation and therapeutic decisions, however, most studies are small or restricted to a few genes. This study provides to our knowledge the first systematic meta-analysis on genotype-phenotype associations in DCM. METHODS AND RESULTS: We retrieved PubMed/Medline literature on genotype-phenotype associations in patients with DCM and mutations in LMNA, PLN, RBM20, MYBPC3, MYH7, TNNT2 and TNNI3. We summarized and extensively reviewed all studies that passed selection criteria and performed a meta-analysis on key phenotypic parameters. Together, 48 studies with 8097 patients were included. Furthermore, we reviewed recent studies investigating genotype-phenotype associations in DCM patients with TTN mutations. The average frequency of mutations in the investigated genes was between 1 and 5 %. The mean age of DCM onset was the beginning of the fifth decade for all genes. Heart transplantation (HTx) rate was highest in LMNA mutation carriers (27 %), while RBM20 mutation carriers were transplanted at a markedly younger age (mean 28.5 years). While 73 % of DCM patients with LMNA mutations showed cardiac conduction diseases, low voltage was the reported ECG hallmark in PLN mutation carriers. The frequency of ventricular arrhythmia in DCM patients with LMNA (50 %) and PLN (43 %) mutations was significantly higher. The penetrance of DCM phenotype in subjects with TTN truncating variants increased with age and reached 100 % by age of 70. CONCLUSION: A pooled analysis of available genotype-phenotype data shows a higher prevalence of sudden cardiac death (SCD), cardiac transplantation, or ventricular arrhythmias in LMNA and PLN mutation carriers compared to sarcomeric gene mutations. This study will further support the clinical interpretation of genetic findings.


Assuntos
Cardiomiopatia Dilatada/genética , Mutação , Adulto , Fatores Etários , Arritmias Cardíacas/genética , Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/fisiopatologia , Cardiomiopatia Dilatada/mortalidade , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/cirurgia , Morte Súbita Cardíaca/etiologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Transplante de Coração , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Medição de Risco , Fatores de Risco , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA