Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Korean J Physiol Pharmacol ; 25(3): 207-216, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33859061

RESUMO

Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4°C) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice. Here, we show that 3 min of CWSS was sufficient to produce antinociception in tailflick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS. CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.

2.
Korean J Physiol Pharmacol ; 20(5): 467-76, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27610033

RESUMO

In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

3.
J Phys Ther Sci ; 28(9): 2556-2559, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27799693

RESUMO

[Purpose] This study was conducted to determine whether acute aerobic exercise (climbing) is associated with changes in the dietary intake pattern. [Subjects and Methods] Food intake and physical activity data for 15 female college students were sampled for 3 days and categorized according to routine activity or high-intensity activity such as hiking. Nutrient intake based on the data was analyzed using a nutrition program. [Results] Carbohydrate and protein intake was significantly decreased after exercise compared to before acute aerobic exercise, but lipid intake showed no significant difference. Calorie intake was significantly decreased after exercise compared to before exercise; however, calorie consumption was significantly increased after exercise. [Conclusion] Aerobic exercise causes a decrease in total calories by inducing reduction in carbohydrate and protein intake. Therefore, aerobic exercise is very important for weight (body fat) control since it causes positive changes in the food intake pattern in female students.

4.
Korean J Physiol Pharmacol ; 19(3): 197-202, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25954123

RESUMO

Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 µg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.

5.
J Agric Food Chem ; 68(11): 3466-3473, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32079399

RESUMO

Resveratrol, a phytoalexin produced by plants, has several beneficial effects in humans. It can be produced using Escherichia coli by introducing only three heterologous genes: TAL, 4CL, and STS. However, the resveratrol synthesis pathway requires two precursors, tyrosine and acetyl-CoA, which are produced by two branched central metabolic pathways. Therefore, overexpression of these genes in E. coli results in the production of only trace amounts of resveratrol. In this study, we attempted to produce resveratrol via coculture of two engineered strains in which the two metabolic pathways are activated. The first strain was engineered to produce p-coumaric acid using tyrosine as a precursor, which can be synthesized by the pentose phosphate pathway. The second strain produced resveratrol by combining p-coumaric acid from the first strain and malonyl-CoA synthesized from acetyl-CoA, which is produced by the glycolytic pathway. In total, 55.7 mg/L of resveratrol was produced from 20 g/L of glucose via coculture of these two strains in glucose minimal medium without any supplements. The metabolic fluxes in each of the strains producing resveratrol were successfully investigated by 13C metabolic flux analysis. The results showed that the balance between the citric acid cycle and the malonyl-CoA supply node was important for resveratrol production.


Assuntos
Escherichia coli , Análise do Fluxo Metabólico , Técnicas de Cocultura , Escherichia coli/genética , Humanos , Engenharia Metabólica , Resveratrol
6.
Biotechnol J ; 15(6): e1900346, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319741

RESUMO

Escherichia coli is engineered for γ-aminobutyrate (GABA) production in glucose minimal medium. For this, overexpression of mutant glutamate decarboxylase (GadB) and mutant glutamate/GABA antiporter (GadC), as well as deletion of GABA transaminase (GabT), are accomplished. In addition, the carbon flux to the tricarboxylic acid cycle is engineered by the overexpression of gltA, ppc, or both. The overexpression of citrate synthase (CS), encoded by gltA, increases GABA productivity, as expected. Meanwhile, the overexpression of phosphoenolpyruvate carboxylase (PPC) causes a decrease in the rate of glucose uptake, resulting in a decrease in GABA production. The phenotypes of the strains are characterized by 13 C metabolic flux analysis (13 C MFA). The results reveal that CS overexpression increases glycolysis and anaplerotic reaction rates, as well as the citrate synthesis rate, while PPC overexpression causes little changes in metabolic fluxes, but reduces glucose uptake rate. The engineered strain produces 1.2 g L-1 of GABA from glucose. Thus, by using 13 C MFA, important information is obtained for designing metabolically engineered strains for efficient GABA production.


Assuntos
Aminobutiratos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico/métodos , Ciclo do Carbono , Ciclo do Ácido Cítrico , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Glutamato Descarboxilase/genética , Ácido Glutâmico , Glicólise , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética
7.
Pharmacol Rep ; 72(6): 1666-1675, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32627115

RESUMO

BACKGROUND: The possible role of dopamine D2 receptors located in the spinal cord in the regulation of the blood glucose level have not been investigated before. METHODS: In the present study, the effect of D2 receptor agonist and antagonist administered intrathecal (it) injection on the blood glucose level were examined in the Institute of Cancer Research (ICR) mice. RESULTS: We found that it injection with carmoxirole (D2 receptor agonist) caused an elevation of the blood glucose level in a dose-dependent manner. Carmoxirole-induced increase of the blood glucose was significantly attenuated by L-741,626 (D2 receptor antagonist). Previously, we indicated that intrathecal (it) treatment with 0.1 µg/5 µl pertussis toxin (PTX, a Gi/Go inhibitor) produces a hypoglycemic effect in ICR in a long-term manner. In the present study, it pretreatment with PTX for 6 days almost abolished the hyperglycemic effect induced by carmoxirole. The plasma insulin level was elevated by carmoxirole, and L-741,626 or PTX pretreatment reduced carmoxirole-induced increment of the insulin level. In addition, the plasma corticosterone level was increased by carmoxirole but it pretreatment with L-741,626 or PTX did not affect carmoxirole-induced increment of the corticosterone level. CONCLUSION: Our results suggest that D2 receptors located in the spinal cord play an important role in the elevation of the blood glucose level. Spinally located inhibitory G-proteins appear to be involved in hyperglycemic effect induced by carmoxirole.


Assuntos
Glicemia/efeitos dos fármacos , Indóis/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Animais , Glicemia/metabolismo , Corticosterona/sangue , Relação Dose-Resposta a Droga , Hiperglicemia/induzido quimicamente , Indóis/administração & dosagem , Injeções Espinhais , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos ICR , Piperidinas/administração & dosagem , Piridinas/administração & dosagem , Receptores de Dopamina D2/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
8.
Anim Cells Syst (Seoul) ; 24(3): 143-150, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33209194

RESUMO

Chrysin, a natural flavonoid, is the main ingredient of many medicinal plants, which shows potent pharmacological properties. In the present study, the antinociceptive effects of chrysin were examined in ICR mice. Chrysin orally administered at the doses of from 10 to 100 mg/kg exerted the reductions of formalin-induced pain behaviors observed during the second phase in the formalin test in a dose-dependent manner. In addition, the antinociceptive effect of chrysin was further characterized in streptozotocin-induced diabetic neuropathy model. Oral administration chrysin caused reversals of decreased pain threshold observed in diabetic-induced peripheral neuropathy model. Intraperitoneally (i.p.) pretreatment with naloxone (a classic opioid receptor antagonist), but not yohimbine (an antagonist of α2-adrenergic receptors) or methysergide (an antagonist of serotonergic receptors), effectively reversed chrysin-induced antinociceptive effect in the formalin test. Moreover, chrysin caused a reduction of formalin-induced up-regulated spinal p-CREB level, which was also reversed by i.t. pretreated naloxone. Finally, chrysin also suppressed the increase of the spinal p-CREB level induced by diabetic neuropathy. Our results suggest that chrysin shows an antinociceptive property in formalin-induced pain and diabetic neuropathy models. In addition, spinal opioid receptors and CREB protein appear to mediate chrysin-induced antinociception in the formalin-induced pain model.

9.
Artigo em Inglês | MEDLINE | ID: mdl-27974904

RESUMO

To evaluate the antihyperglycemic effect of a standardized extract of the leaves of Morus alba (SEMA), the present study was designed to investigate the α-glucosidase inhibitory effect and acute single oral toxicity as well as evaluate blood glucose reduction in animals and in patients with impaired glucose tolerance in a randomized double-blind clinical trial. SEMA was found to inhibit α-glucosidase at a fourfold higher level than the positive control (acarbose), in a concentration-dependent manner. Moreover, blood glucose concentration was suppressed by SEMA in vivo. Clinical signs and weight changes were observed when conducting an evaluation of the acute toxicity of SEMA through a single-time administration, with clinical observation conducted more than once each day. After administration of the SEMA, observation was for 14 days; all of the animals did not die and did not show any abnormal symptoms. In addition, the inhibitory effects of rice coated with SEMA were evaluated in a group of impaired glucose tolerance patients on postprandial glucose and a group of normal persons, and results showed that SEMA had a clear inhibitory effect on postprandial hyperglycemia in both groups. Overall, SEMA showed excellent potential in the present study as a material for improving postprandial hyperglycemia.

10.
Exp Neurobiol ; 24(1): 24-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25792867

RESUMO

We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA