RESUMO
Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.
Assuntos
Plasticidade Celular , Neuroblastoma , Fatores de Transcrição , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , DNA Helicases/metabolismo , DNA Helicases/genética , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Resistencia a Medicamentos Antineoplásicos/genética , Animais , Proteínas NuclearesRESUMO
Light sheet microscopy is a powerful technique for high-speed three-dimensional imaging of subcellular dynamics and large biological specimens. However, it often generates datasets ranging from hundreds of gigabytes to petabytes in size for a single experiment. Conventional computational tools process such images far slower than the time to acquire them and often fail outright due to memory limitations. To address these challenges, we present PetaKit5D, a scalable software solution for efficient petabyte-scale light sheet image processing. This software incorporates a suite of commonly used processing tools that are optimized for memory and performance. Notable advancements include rapid image readers and writers, fast and memory-efficient geometric transformations, high-performance Richardson-Lucy deconvolution and scalable Zarr-based stitching. These features outperform state-of-the-art methods by over one order of magnitude, enabling the processing of petabyte-scale image data at the full teravoxel rates of modern imaging cameras. The software opens new avenues for biological discoveries through large-scale imaging experiments.
RESUMO
MYCN activates canonical MYC targets involved in ribosome biogenesis, protein synthesis, and represses neuronal differentiation genes to drive oncogenesis in neuroblastoma (NB). How MYCN orchestrates global gene expression remains incompletely understood. Our study finds that MYCN binds promoters to up-regulate canonical MYC targets but binds to both enhancers and promoters to repress differentiation genes. MYCN binding also increases H3K4me3 and H3K27ac on canonical MYC target promoters and decreases H3K27ac on neuronal differentiation gene enhancers and promoters. WDR5 facilitates MYCN promoter binding to activate canonical MYC target genes, whereas MYCN recruits G9a to enhancers to repress neuronal differentiation genes. Targeting both MYCN's active and repressive transcriptional activities using both WDR5 and G9a inhibitors synergistically suppresses NB growth. We demonstrate that MYCN cooperates with WDR5 and G9a to orchestrate global gene transcription. The targeting of both these cofactors is a novel therapeutic strategy to indirectly target the oncogenic activity of MYCN.
Assuntos
Transformação Celular Neoplásica , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Histona Metiltransferases/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Transcrição Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-ß/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.
Assuntos
Proteínas da Matriz Extracelular , Pulmão , Hipertensão Arterial Pulmonar , Humanos , Animais , Pulmão/metabolismo , Pulmão/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/genética , Ratos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Masculino , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Transdução de Sinais , Perfilação da Expressão Gênica , Proteína Smad3/metabolismo , Proteína Smad3/genética , Feminino , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Proteína Smad2/genética , Transcriptoma , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Pessoa de Meia-Idade , MultiômicaRESUMO
RNA import into mammalian mitochondria is considered essential for replication, transcription, and translation of the mitochondrial genome but the pathway(s) and factors that control this import are poorly understood. Previously, we localized polynucleotide phosphorylase (PNPASE), a 3' --> 5' exoribonuclease and poly-A polymerase, in the mitochondrial intermembrane space, a location lacking resident RNAs. Here, we show a new role for PNPASE in regulating the import of nuclear-encoded RNAs into the mitochondrial matrix. PNPASE reduction impaired mitochondrial RNA processing and polycistronic transcripts accumulated. Augmented import of RNase P, 5S rRNA, and MRP RNAs depended on PNPASE expression and PNPASE-imported RNA interactions were identified. PNPASE RNA processing and import activities were separable and a mitochondrial RNA targeting signal was isolated that enabled RNA import in a PNPASE-dependent manner. Combined, these data strongly support an unanticipated role for PNPASE in mediating the translocation of RNAs into mitochondria.
Assuntos
Mitocôndrias/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA/metabolismo , Animais , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Polirribonucleotídeo Nucleotidiltransferase/genética , Processamento Pós-Transcricional do RNA , Ribonuclease P/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling caused by plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. Objective: We sought to test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. Methods: We used digital spatial transcriptomics to profile the genomewide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n = 11) and compared these data with the intima+media hypertrophy and adventitia of control pulmonary artery (n = 5). Measurements and Main Results: We detected 8,273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima+media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for 1) genes associated with transforming growth factor ß signaling and 2) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and IFN signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. Conclusions: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.
Assuntos
Artéria Pulmonar , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Remodelação Vascular/genética , Perfilação da Expressão Gênica/métodos , Hipertensão Arterial Pulmonar/genética , Transcriptoma/genética , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/fisiopatologiaRESUMO
Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF)-associated pulmonary hypertension (PH) (PF-PH). Weighted gene coexpression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR), and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, whereas the tan and darkgrey modules are positively correlated with PVR in PF-PH. In addition, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for bone morphogenetic protein (BMP) loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial-mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated coexpression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.NEW & NOTEWORTHY An integrative systems biology approach that included transcriptomic analysis of explanted lung tissue from patients with pulmonary fibrosis (PF) with and without pulmonary hypertension (PH) undergoing lung transplantation, combined with hemodynamic correlation and pharmacotranscriptomics, identified modules of genes associated with pulmonary vascular disease severity. Comparison with an independent pulmonary arterial hypertension (PAH) dataset identified shared gene expression patterns between PAH and PF-PH.
Assuntos
Hipertensão Pulmonar , Pulmão , Fibrose Pulmonar , Transcriptoma , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Feminino , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pessoa de Meia-Idade , Redes Reguladoras de Genes , Resistência Vascular , Perfilação da Expressão Gênica/métodosRESUMO
The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.
Assuntos
Nanotecnologia , Nematoides , Doenças das Plantas , Animais , Nematoides/fisiologia , Nanotecnologia/métodos , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Produtos Agrícolas/parasitologia , Produtos Agrícolas/genética , Interferência de RNARESUMO
OBJECTIVE: Fenestrated-branched endovascular aortic repair (FB-EVAR) has shown favorable outcomes for repair of complex aneurysms and thoracoabdominal aortic aneurysms. Physician-modified endografting (PMEG) and the Gore thoracoabdominal multibranch endoprosthesis (TAMBE) provide custom and off-the-shelf devices for FB-EVAR, respectively. This study compares the outcomes of TAMBE and PMEG at a single institution. METHODS: A retrospective review of patients who underwent TAMBE as part of the multicenter pivotal trial or PMEG as part of a prospective physician-sponsored investigational device exemption at a single institution between 2020 and 2022 were completed. Patient demographics, characteristics, and perioperative and midterm outcomes were compared. RESULTS: A total of 68 patients were included, with 12 in the TAMBE group and 56 in the PMEG group. Baseline characteristics were comparable between groups. Aneurysm type was most often thoracoabdominal aortic aneurysm in both groups (58% TAMBE and 52% PMEG). TAMBE had a higher rate of upper extremity access (100% vs 63%; P = .013) and longer mean procedure time (247 ± 36 minutes vs 189 ± 49 minutes; P < .001). Other intraoperative metrics were similar between groups. Technical success was 100% in TAMBE and 95% in PMEG (P = .412). There was no 30-day mortality in either group. No major adverse events occurred with TAMBE, whereas in PMEG cases, 2% had respiratory failure, 2% required dialysis, and 4% experienced spinal cord ischemia. Although the overall endoleak rates were similar (50% of TAMBE vs 41% of PMEG; P = .57), type II endoleaks accounted for all of the endoleaks in the TAMBE group, whereas type I or III endoleaks were seen in 11% of PMEG patients. At a median follow-up of 26.7 months for the TAMBE group and 21.2 months for the PMEG group, target vessel instability was seen in 10.4% of TAMBE, and 6.9% of PMEG targeted branches (P = .401). Reintervention was required in 33% of TAMBE patients and 27% of PMEG patients (P = .646). Estimated freedom from reintervention rates at 3 years were similar (56% TAMBE vs 62% PMEG, log-rank P = .910). Freedom from visceral renal target vessel instability at 3 years was 89% for both groups (log-rank P = .459). The Kaplan-Meier 3-year estimated survival was 100% for patients in the TAMBE group and 77% for patients in the PMEG group (log-rank P = .157). CONCLUSIONS: At experienced centers, FB-EVAR can be completed with PMEG or TAMBE with comparable, excellent perioperative and midterm outcomes. Reinterventions are frequently needed for both TAMBE and PMEG.
RESUMO
This review examines how single-cell omics technologies, particularly single-cell RNA sequencing (scRNAseq), enhance our understanding of pulmonary arterial hypertension (PAH). PAH is a multifaceted disorder marked by pulmonary vascular remodeling, leading to high morbidity and mortality. The cellular pathobiology of this heterogeneous disease, involving various vascular and non-vascular cell types, is not fully understood. Traditional PAH studies have struggled to resolve the complexity of pathogenic cell populations. scRNAseq offers a refined perspective by detailing cellular diversity within PAH, identifying unique cell subsets, gene networks, and molecular pathways that drive the disease. We discuss significant findings from recent literature, summarizing how scRNAseq has shifted our understanding of PAH in human, rat, and mouse models. This review highlights the insights gained into cellular phenotypes, gene expression patterns, and novel molecular targets, and contemplates the challenges and prospective paths for research. We propose ways in which single-cell omics could inform future research and translational efforts to combat PAH.
Assuntos
Análise de Célula Única , Humanos , Animais , Análise de Célula Única/métodos , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Hipertensão Arterial Pulmonar/patologia , Análise de Sequência de RNA/métodos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologiaRESUMO
The loss of the soil fumigant methyl bromide (MeBr) and adoption of soil fumigant alternatives has been challenging for farmers, particularly for those crops in which pathogens previously controlled by MeBr have emerged as significant problems, but it has resulted in some unanticipated benefits for the scientific community and the environment. Applauded as one of the most effective environmental agreements to date, the universally accepted Montreal Protocol on Ozone Depleting Substances has had a significant impact on the environment, reducing the release of halogenated compounds from anthropogenic sources enough to mitigate global warming by an estimated 1.1°C by 2021. The funding associated with various MeBr transition programs has increased collaboration across scientific disciplines, commodity groups, industry, and regulatory agencies. Chemical alternatives and improved application strategies, including the development of gas-retentive agricultural films, coupled with sound efficacy data and grower ingenuity have resulted in the sustained production of many of the impacted crops; although there has been some loss of acreage and value, particularly for Florida fumigated crops, for some, value has continued to increase, allowing production to continue. The loss of a single, broad-spectrum tool for pest control has led to a deeper understanding of the specific pest complexes impacting these at-risk crops, as well as the development of new, biologically based management tools for their control while increasing our understanding of the role of the soil microbiome in pest control and crop production.
Assuntos
Fumigação , Hidrocarbonetos Bromados , Solo , Solo/química , Produtos Agrícolas/microbiologia , Agricultura , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologiaRESUMO
The identification and role of endothelial progenitor cells in pulmonary arterial hypertension (PAH) remain controversial. Single-cell omics analysis can shed light on endothelial progenitor cells and their potential contribution to PAH pathobiology. We aim to identify endothelial cells that may have stem/progenitor potential in rat lungs and assess their relevance to PAH. Differential expression, gene set enrichment, cell-cell communication, and trajectory reconstruction analyses were performed on lung endothelial cells from single-cell RNA sequencing of Sugen-hypoxia, monocrotaline, and control rats. Relevance to human PAH was assessed in multiple independent blood and lung transcriptomic data sets. Rat lung endothelial cells were visualized by immunofluorescence in situ, analyzed by flow cytometry, and assessed for tubulogenesis in vitro. A subpopulation of endothelial cells (endothelial arterial type 2 [EA2]) marked by Tm4sf1 (transmembrane 4 L six family member 1), a gene strongly implicated in cancer, harbored a distinct transcriptomic signature enriched for angiogenesis and CXCL12 signaling. Trajectory analysis predicted that EA2 has a less differentiated state compared with other endothelial subpopulations. Analysis of independent data sets revealed that TM4SF1 is downregulated in lungs and endothelial cells from patients and PAH models, is a marker for hematopoietic stem cells, and is upregulated in PAH circulation. TM4SF1+CD31+ rat lung endothelial cells were visualized in distal pulmonary arteries, expressed hematopoietic marker CD45, and formed tubules in coculture with lung fibroblasts. Our study uncovered a novel Tm4sf1-marked subpopulation of rat lung endothelial cells that may have stem/progenitor potential and demonstrated its relevance to PAH. Future studies are warranted to further elucidate the role of EA2 and Tm4sf1 in PAH.
Assuntos
Células Progenitoras Endoteliais , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Antígenos de Superfície/metabolismo , Modelos Animais de Doenças , Endotélio , Hipertensão Pulmonar Primária Familiar/metabolismo , Monocrotalina , Proteínas de Neoplasias/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismoRESUMO
Rationale: Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure, and death. PAH exhibits a striking sex bias and is up to four times more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies. Objectives: We previously discovered that the Y chromosome is protective against hypoxia-induced experimental pulmonary hypertension (PH), which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods: To test the effect of Y-chromosome genes on PH development, we knocked down each Y-chromosome gene expressed in the lung by means of intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia and monitored changes in right ventricular and pulmonary artery hemodynamics. We compared the lung transcriptome of Uty knockdown mouse lungs to those of male and female PAH patient lungs to identify common downstream pathogenic chemokines and tested the effects of these chemokines on human pulmonary artery endothelial cells. We further inhibited the activity of these chemokines in two preclinical pulmonary hypertension models to test the therapeutic efficacy. Measurements and Main Results: Knockdown of the Y-chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in females with PAH. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of Cxcl9 and Cxcl10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity. Conclusions:Uty is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines Cxcl9 and Cxcl10, which trigger endothelial cell death and PH. Inhibition of CLXC9 and CXLC10 rescues PH development in multiple experimental models.
Assuntos
Quimiocinas , Hipertensão Pulmonar , Antígenos de Histocompatibilidade Menor , Proteínas Nucleares , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Feminino , Genes Ligados ao Cromossomo Y , Humanos , Hipertensão Pulmonar/genética , Hipóxia , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Proteínas Nucleares/genética , Artéria Pulmonar , RatosRESUMO
Main effect models contend that perceived social support benefits mental health in the presence and the absence of stressful events, whereas stress-buffering models contend that perceived social support benefits mental health especially when individuals are facing stressful events. We tested these models of how perceived social support impacts mental health during the COVID-19 pandemic and evaluated whether characteristics of everyday social interactions statistically mediated this association - namely, (a) received support, the visible and deliberate assistance provided by others, and (b) pleasantness, the extent to which an interaction is positive, flows easily, and leads individuals to feel understood and validated. 591 United States adults completed a 3-week ecological momentary assessment protocol sampling characteristics of their everyday social interactions that was used to evaluate between-person average values and within-person daily fluctuations in everyday social interaction characteristics. Global measures of perceived social support and pandemic-related stressors were assessed at baseline. Psychiatric symptoms of depression and anxiety were assessed at baseline, at the end of each day of ecological momentary assessment, and at 3-week follow-up. Consistent with a main effect model, higher baseline perceived social support predicted decreases in psychiatric symptoms at 3-week follow-up (ß = -.09, p = .001). Contrary to a stress-buffering model, we did not find an interaction of pandemic-stressors × perceived social support. The main effect of perceived social support on mental health was mediated by the pleasantness of everyday social interactions, but not by received support in everyday social interactions. We found evidence for both main effects and stress-buffering effects of within-person fluctuations in interaction pleasantness on daily changes in mental health. Results suggest the importance of everyday social interaction characteristics, especially their pleasantness, in linking perceived social support and mental health.
RESUMO
Rationale: The cellular and molecular landscape and translational value of commonly used models of pulmonary arterial hypertension (PAH) are poorly understood. Single-cell transcriptomics can enhance molecular understanding of preclinical models and facilitate their rational use and interpretation.Objectives: To determine and prioritize dysregulated genes, pathways, and cell types in lungs of PAH rat models to assess relevance to human PAH and identify drug repositioning candidates.Methods: Single-cell RNA sequencing was performed on the lungs of monocrotaline (MCT), Sugen-hypoxia (SuHx), and control rats to identify altered genes and cell types, followed by validation using flow-sorted cells, RNA in situ hybridization, and immunofluorescence. Relevance to human PAH was assessed by histology of lungs from patients and via integration with human PAH genetic loci and known disease genes. Candidate drugs were predicted using Connectivity Map.Measurements and Main Results: Distinct changes in genes and pathways in numerous cell types were identified in SuHx and MCT lungs. Widespread upregulation of NF-κB signaling and downregulation of IFN signaling was observed across cell types. SuHx nonclassical monocytes and MCT conventional dendritic cells showed particularly strong NF-κB pathway activation. Genes altered in SuHx nonclassical monocytes were significantly enriched for PAH-associated genes and genetic variants, and candidate drugs predicted to reverse the changes were identified. An open-access online platform was developed to share single-cell data and drug candidates (http://mergeomics.research.idre.ucla.edu/PVDSingleCell/).Conclusions: Our study revealed the distinct and shared dysregulation of genes and pathways in two commonly used PAH models for the first time at single-cell resolution and demonstrated their relevance to human PAH and utility for drug repositioning.
Assuntos
Anti-Hipertensivos/uso terapêutico , Células Cultivadas/efeitos dos fármacos , Reposicionamento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Smartphone-based contact-tracing apps are a promising solution to help scale up the conventional contact-tracing process. However, low adoption rates have become a major issue that prevents these apps from achieving their full potential. In this paper, we present a national-scale survey experiment ( N = 1963 ) in the U.S. to investigate the effects of app design choices and individual differences on COVID-19 contact-tracing app adoption intentions. We found that individual differences such as prosocialness, COVID-19 risk perceptions, general privacy concerns, technology readiness, and demographic factors played a more important role than app design choices such as decentralized design vs. centralized design, location use, app providers, and the presentation of security risks. Certain app designs could exacerbate the different preferences in different sub-populations which may lead to an inequality of acceptance to certain app design choices (e.g., developed by state health authorities vs. a large tech company) among different groups of people (e.g., people living in rural areas vs. people living in urban areas). Our mediation analysis showed that one's perception of the public health benefits offered by the app and the adoption willingness of other people had a larger effect in explaining the observed effects of app design choices and individual differences than one's perception of the app's security and privacy risks. With these findings, we discuss practical implications on the design, marketing, and deployment of COVID-19 contact-tracing apps in the U.S.
RESUMO
The novel 2019 coronavirus disease (COVID-19), resulting from severe acute respiratory syndrome coronarvirus-2 (SARS-CoV-2) infection, typically leads to respiratory failure in severe cases; however, cardiovascular injury is reported to contribute to a substantial proportion of COVID-19 deaths. Preexisting cardiovascular disease (CVD) is among the most common risk factors for hospitalization and death in COVID-19 patients, and the pathogenic mechanisms of COVID-19 disease progression itself may promote the development of cardiovascular injury, increasing risk of in-hospital death. Sex differences in COVID-19 are becoming more apparent as mounting data indicate that males seem to be disproportionately at risk of severe COVID-19 outcome due to preexisting CVD and COVID-19-related cardiovascular injury. In this review, we will provide a basic science perspective on current clinical observations in this rapidly evolving field and discuss the interplay sex differences, preexisting CVD and COVID-19-related cardiac injury.
Assuntos
COVID-19/epidemiologia , Doenças Cardiovasculares/epidemiologia , Fatores Sexuais , Enzima de Conversão de Angiotensina 2/genética , Arritmias Cardíacas/complicações , Arritmias Cardíacas/epidemiologia , COVID-19/complicações , COVID-19/genética , Doenças Cardiovasculares/complicações , Progressão da Doença , Suscetibilidade a Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Inflamação , Masculino , Microcirculação , Obesidade/complicações , Fatores de Risco , Fumar , Trombose/complicações , Trombose/epidemiologiaRESUMO
Intercellular propagation of protein aggregation is emerging as a key mechanism in the progression of several neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia (FTD). However, we lack a systematic understanding of the cellular pathways controlling prion-like propagation of aggregation. To uncover such pathways, here we performed CRISPR interference (CRISPRi) screens in a human cell-based model of propagation of tau aggregation monitored by FRET. Our screens uncovered that knockdown of several components of the endosomal sorting complexes required for transport (ESCRT) machinery, including charged multivesicular body protein 6 (CHMP6), or CHMP2A in combination with CHMP2B (whose gene is linked to familial FTD), promote propagation of tau aggregation. We found that knocking down the genes encoding these proteins also causes damage to endolysosomal membranes, consistent with a role for the ESCRT pathway in endolysosomal membrane repair. Leakiness of the endolysosomal compartment significantly enhanced prion-like propagation of tau aggregation, likely by making tau seeds more available to pools of cytoplasmic tau. Together, these findings suggest that endolysosomal escape is a critical step in tau propagation in neurodegenerative diseases.
Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lisossomos/metabolismo , Proteínas tau/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Agregados ProteicosRESUMO
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons throughout the brain and spinal cord progressively degenerate resulting in muscle atrophy, paralysis and death. Recent studies using animal models of ALS implicate multiple cell-types (e.g., astrocytes and microglia) in ALS pathogenesis in the spinal motor systems. To ascertain cellular vulnerability and cell-type specific mechanisms of ALS in the brainstem that orchestrates oral-motor functions, we conducted parallel single cell RNA sequencing (scRNA-seq) analysis using the high-throughput Drop-seq method. We isolated 1894 and 3199 cells from the brainstem of wildtype and mutant SOD1 symptomatic mice respectively, at postnatal day 100. We recovered major known cell types and neuronal subpopulations, such as interneurons and motor neurons, and trigeminal ganglion (TG) peripheral sensory neurons, as well as, previously uncharacterized interneuron subtypes. We found that the majority of the cell types displayed transcriptomic alterations in ALS mice. Differentially expressed genes (DEGs) of individual cell populations revealed cell-type specific alterations in numerous pathways, including previously known ALS pathways such as inflammation (in microglia), stress response (ependymal and an uncharacterized cell population), neurogenesis (astrocytes, oligodendrocytes, neurons), synapse organization and transmission (microglia, oligodendrocyte precursor cells, and neuronal subtypes), and mitochondrial function (uncharacterized cell populations). Other cell-type specific processes altered in SOD1 mutant brainstem include those from motor neurons (axon regeneration, voltage-gated sodium and potassium channels underlying excitability, potassium ion transport), trigeminal sensory neurons (detection of temperature stimulus involved in sensory perception), and cellular response to toxic substances (uncharacterized cell populations). DEGs consistently altered across cell types (e.g., Malat1), as well as cell-type specific DEGs, were identified. Importantly, DEGs from various cell types overlapped with known ALS genes from the literature and with top hits from an existing human ALS genome-wide association study (GWAS), implicating the potential cell types in which the ALS genes function with ALS pathogenesis. Our molecular investigation at single cell resolution provides comprehensive insights into the cell types, genes and pathways altered in the brainstem in a widely used ALS mouse model.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Feminino , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Superóxido Dismutase-1/genética , TranscriptomaRESUMO
Pulmonary hypertension (PH) developing secondarily in pulmonary fibrosis (PF) patients (PF-PH) is a frequent co-morbidity. The high prevalence of PH in PF patients is very concerning since the presence of PH is a strong predictor of mortality in PF patients. Until recently, PH was thought to arise solely from fibrotic destruction of the lung parenchyma, leading to hypoxic vasoconstriction and loss of vascular bed density. Thus, potential cellular and molecular dysregulation of vascular remodeling as a driver of PF-PH has been under-investigated. The recent demonstrations that there is no correlation between the severity of the fibrosis and development of PH, along with the finding that significant vascular histological and molecular differences exist between patients with and without PH have shifted the etiological paradigm of PF-PH. This review aims to provide a comprehensive translational overview of PH in PF patients from clinical diagnosis and outcome to the latest understanding of the histology and molecular pathophysiology of PF-PH.