RESUMO
The elongation of very long chain fatty acids protein 6 (ELOVL6) gene encodes a key enzyme that plays a role in lipogenesis through the catalytic elongation of both saturated and monounsaturated fatty acids. Previous studies have described the high expression of bovine ELOVL6 in adipose tissues. However, transcriptional regulation and the functional role of ELOVL6 in lipid metabolism and adipocyte proliferation remain unexplored. Here, a 1.5 kb fragment of the 5'-untranslated region promoter region of ELOVL6 was amplified from the genomic DNA of Qinchuan cattle and sequenced. The core promoter region was identified through unidirectional 5'-end deletion of the promoter plasmid vector. In silico analysis predicted important transcription factors that were then validated through site-directed mutation and small interfering RNA interference with an electrophoretic mobility shift assay. We found that the binding of KLF6 and PU.1 transcription factors occurred in the region -168/+69. Both perform a vital regulatory function in the transcription of bovine ELOVL6. Overexpression of ELOVL6 significantly upregulated the expression of peroxisome proliferator activated receptor γ (PPARγ), but inhibited the expression of fatty acid-binding protein 4 (FABP4), while silencing of ELOVL6 negatively regulated the messenger RNA expression level of PPARγ, FABP4, ACSL, and FATP1. In addition, ELOVL6 promotes adipocyte proliferation by regulating the cell-cycle genes' expression. Taken together, these findings provide useful information about the transcriptional regulation and functional mechanisms of bovine ELOVL6 in lipid metabolism and adipocyte proliferation in Qinchuan cattle.
Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Elongases de Ácidos Graxos/genética , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Bovinos , Proliferação de Células/genética , Elongases de Ácidos Graxos/metabolismo , Fator 6 Semelhante a Kruppel/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Deleção de Sequência , Frações Subcelulares/metabolismo , Transativadores/metabolismoRESUMO
Sirtuin6 (SIRT6) is an ADP-ribosyltransferase and NAD+-dependent deacylase of acetyl groups and long-chain fatty acyl groups, and has been shown as a regulator of insulin secretion, glucose metabolism, lipid metabolism, and cancer. In this study, we determined that the bovine SIRT6 showed higher levels of mRNA expression in the testis, longissimus thoracis, and subcutaneous fat tissue. To elucidate the molecular regulation mechanism of bovine SIRT6 expression, we obtained a 2-kb fragment containing the 5'-regulatory region, and the functional proximal minimal promoter of bovine SIRT6 was identified in the -472/-73 bp region. The CCAAT enhancer binding protein beta (CEBPß), paired box 6 (PAX6), Kruppel-like factor 2 (KLF2), myb proto-oncogene protein (CMYB), nuclear respiratory factor 1 (NRF1), and E2F transcription factor 1 (E2F1) binding sites, as transcriptional activators or repressors in the core promoter region of SIRT6, were determined by electrophoretic mobility shift assay (EMSA) experiments and luciferase reporter assays. In addition, the results from methylation assay and luciferase report assay showed that the bovine SIRT6 promoter activity was coordinately regulated by methylation and NRF1 or E2F1 during bovine adipocyte differentiation. Taken together, this study illuminated the underlying mechanism of methylation and transcription regulation of SIRT6 expression in bovine adipocytes.
Assuntos
Adipócitos/metabolismo , Metilação de DNA , Regiões Promotoras Genéticas/genética , Sirtuínas/genética , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Bovinos , Diferenciação Celular , Regulação da Expressão Gênica , Espaço Intracelular/metabolismo , Camundongos , Filogenia , Transporte Proteico , Análise de Sequência , Sirtuínas/metabolismoRESUMO
The SIX1 gene belongs to the family of six homeodomain transcription factors (TFs), that regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and mediate skeletal muscle growth and regeneration. Previous studies have demonstrated that SIX1 is positively correlated with body measurement traits (BMTs). However, the transcriptional regulation of SIX1 remains unclear. In the present study, we determined that bovine SIX1 was highly expressed in the longissimus thoracis. To elucidate the molecular mechanisms involved in bovine SIX1 regulation, 2-kb of the 5' regulatory region were obtained. Sequence analysis identified neither a consensus TATA box nor a CCAAT box in the 5' flanking region of bovine SIX1. However, a CpG island was predicted in the region -235 to +658 relative to the transcriptional start site (TSS). An electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay in combination with serial deletion constructs of the 5' flanking region, site-directed mutation and siRNA interference demonstrated that MyoD, PAX7 and CREB binding occur in region -689/-40 and play important roles in bovine SIX1 transcription. In addition, MyoG drives SIX1 transcription indirectly via the MEF3 motif. Taken together these interactions suggest a key functional role for SIX1 in mediating skeletal muscle growth in cattle.
Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/crescimento & desenvolvimento , Miogenina/genética , Regiões Promotoras Genéticas/genética , Motivos de Aminoácidos/genética , Animais , Bovinos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas de Homeodomínio/química , Sistema de Sinalização das MAP Quinases/genética , Músculo Esquelético/metabolismo , Proteína MyoD/química , Proteína MyoD/genética , Miogenina/química , Fator de Transcrição PAX7/química , Fator de Transcrição PAX7/genética , TATA Box/genéticaRESUMO
Intramuscular fat (IMF) is known to enhance beef palatability and can be markedly increased by castration. However, there is little understanding of the molecular mechanism underlying the IMF deposition after castration of beef cattle. We hypothesize that genetic regulators function differently in IMF from bulls and steers. Therefore, after detecting serum testosterone and lipid parameter, as well as the contents of IMF at 6, 12, 18 and 24 months, we have investigated differentially expressed (DE) microRNAs (miRNAs) and mRNAs in IMF of bulls and steers at 24 months of age in Qinchuan cattle using next-generation sequencing, and then explored the possible biopathways regulating IMF deposition. Serum testosterone levels were significantly decreased in steers, whereas IMF content, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TGs) were markedly increased in steers. Comparing the results of steers and bulls, 580 upregulated genes and 1,120 downregulated genes in IMF tissues were identified as DE genes correlated with IMF deposition. The upregulated genes were mainly associated with lipid metabolism, lipogenesis and fatty acid transportation signalling pathways, and the downregulated genes were correlated with immune response and intracellular signal transduction. Concurrently, the DE miRNAs-important players in adipose tissue accumulation induced by castration-were also examined in IMF tissues; 52 DE miRNAs were identified. The expression profiles of selected genes and miRNAs were also confirmed by quantitative real-time PCR (qRT-PCR) assays. Using integrated analysis, we constructed the microRNA-target regulatory network which was supported by target validation using the dual luciferase reporter system. Moreover, Ingenuity Pathway Analysis (IPA) software was used to construct a molecular interaction network that could be involved in regulating IMF after castration. The detected molecular network is closely associated with lipid metabolism and adipocyte differentiation, which is supported by functional identification results of bta-let-7i on bovine preadipocytes. These results provided valuable insights into the molecular mechanisms of the IMF phenotype differences between steers and bulls.