Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacogenet Genomics ; 33(6): 136-137, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306342

RESUMO

A novel haplotype in N -acetyltransferase 2 ( NAT2 ) composed of seven non-coding variants (rs1495741, rs4921913, rs4921914, rs4921915, rs146812806, rs35246381, and rs35570672) has been linked to dyslipidemia by multiple, independent genome-wide association studies. The haplotype is located approximately 14 kb downstream of NAT2-coding region (ch8:18,272,377-18,272,881; GRCh38/hg38) and represents a non-coding, intergenic haplotype. Interestingly, the same dyslipidemia NAT2 haplotype is also linked to urinary bladder cancer risk. Dyslipidemia risk alleles are associated with rapid acetylator phenotype, whereas bladder cancer risk alleles are associated with slow acetylator, suggesting that the level of systemic NAT2 activity modifies the risk of these pathologies. We speculate that rs1495741 (and its associated haplotype) belongs to a distal regulatory element of human NAT2 gene (e.g., enhancer or silencer), and the genetic variation at the newly discovered haplotype results in a differential level of NAT2 gene expression. Understanding how this NAT2 haplotype contributes to not only urinary bladder cancer but also to dyslipidemia will ultimately help devise strategies to identify and protect susceptible individuals.


Assuntos
Arilamina N-Acetiltransferase , Dislipidemias , Neoplasias da Bexiga Urinária , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Neoplasias da Bexiga Urinária/genética , Dislipidemias/genética
2.
Arch Toxicol ; 97(6): 1613-1626, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37005939

RESUMO

Heterocyclic amines (HCAs) are well-known for their mutagenic properties. One of the major routes of human exposure is through consumption of cooked meat, as certain cooking methods favor formation of HCAs. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes. However, no previous studies have examined if HCAs, independent of meat consumption, contributes to pathogenesis of insulin resistance or metabolic disease. In the present study, we have assessed the effect of three HCAs commonly found in cooked meat (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline [MeIQ], 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline [MeIQx], and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [PhIP]) on insulin signaling and glucose production. HepG2 or cryopreserved human hepatocytes were treated with 0-50 µM of MeIQ, MeIQx, or PhIP for 3 days. Treatment of HepG2 cells and hepatocytes with MeIQ and MeIQx resulted in a significant reduction in insulin-induced AKT phosphorylation, suggesting that HCA exposure decreases hepatic insulin signaling. HCA treatment also led to significant increases in expression of gluconeogenic genes, G6PC and PCK1, in both HepG2 and cryopreserved human hepatocytes. Additionally, the level of phosphorylated FOXO1, a transcriptional regulator of gluconeogenesis, was significantly reduced by HCA treatment in hepatocytes. Importantly, HCA treatment of human hepatocytes led to increases in extracellular glucose level in the presence of gluconeogenic substrates, suggesting that HCAs induce hepatic glucose production. The current findings suggest that HCAs induce insulin resistance and promote hepatic glucose production in human hepatocytes. This implicates that exposure to HCAs may lead to the development of type II diabetes or metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Proteínas Proto-Oncogênicas c-akt , Insulina , Gluconeogênese , Fosforilação , Culinária/métodos , Aminas/química , Quinoxalinas/toxicidade , Hepatócitos , Glucose , Expressão Gênica
3.
Mol Carcinog ; 61(5): 481-493, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35133049

RESUMO

Arylamine N-acetyltransferase 1 (NAT1) is frequently upregulated in breast cancer. Previous studies showed that inhibition or depletion of NAT1 in breast cancer cells diminishes anchorage-independent growth in culture, suggesting that NAT1 contributes to breast cancer growth and metastasis. To further investigate the contribution of NAT1 to growth and cell invasive/migratory behavior, we subjected parental and NAT1 knockout (KO) breast cancer cell lines (MDA-MB-231, MCF-7, and ZR-75-1) to multiple assays. The rate of cell growth in suspension was not consistently decreased in NAT1 KO cells across the cell lines tested. Similarly, cell migration and invasion assays failed to produce reproducible differences between the parental and NAT1 KO cells. To overcome the limitations of in vitro assays, we tested parental and NAT1 KO cells in vivo in a xenograft model by injecting cells into the flank of immunocompromised mice. NAT1 KO MDA-MB-231 cells produced primary tumors smaller than those formed by parental cells, which was contributed by an increased rate of apoptosis in KO cells. The frequency of lung metastasis, however, was not altered in NAT1 KO cells. When the primary tumors of the parental and NAT1 KO cells were allowed to grow to a pre-determined size or delivered directly via tail vein, the number and size of metastatic foci in the lung did not differ between the parental and NAT1 KO cells. In conclusion, NAT1 contributes to primary and secondary tumor growth in vivo in MDA-MB-231 breast cancer cells but does not appear to affect its metastatic potential.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Mama , Animais , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos
4.
Circ Res ; 119(5): 635-51, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27364016

RESUMO

RATIONALE: The effects of c-kit(POS) cardiac progenitor cells (CPCs, and adult cell therapy in general) on left ventricular (LV) function have been regarded as modest or inconsistent. OBJECTIVE: To determine whether 3 CPC infusions have greater efficacy than 1 infusion. METHODS AND RESULTS: Rats with a 30-day-old myocardial infarction received 1 or 3 CPC infusions into the LV cavity, 35 days apart. Compared with vehicle-treated rats, the single-dose group exhibited improved LV function after the first infusion (consisting of CPCs) but not after the second and third (vehicle). In contrast, in the multiple-dose group, regional and global LV function improved by a similar degree after each CPC infusion, resulting in greater cumulative effects. For example, the total increase in LV ejection fraction was approximately triple in the multiple-dose group versus the single-dose group (P<0.01). The multiple-dose group also exhibited more viable tissue and less scar, less collagen in the risk and noninfarcted regions, and greater myocyte density in the risk region. CONCLUSIONS: This is the first demonstration that repeated CPC administrations are markedly more effective than a single administration. The concept that the full effects of CPCs require repeated doses has significant implications for both preclinical and clinical studies; it suggests that the benefits of cell therapy may be underestimated or even overlooked if they are measured after a single dose, and that repeated administrations are necessary to evaluate the effectiveness of a cell product properly. In addition, we describe a new method that enables studies of repeated cell administrations in rodents.


Assuntos
Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/fisiologia , Animais , Sobrevivência Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Feminino , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Endogâmicos F344 , Transplante de Células-Tronco/tendências , Função Ventricular Esquerda/fisiologia
6.
J Biol Chem ; 291(26): 13634-48, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27151219

RESUMO

Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glicólise , Mioblastos Cardíacos/metabolismo , Fosfofrutoquinase-2/biossíntese , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação Enzimológica da Expressão Gênica , Glucose/genética , Masculino , Camundongos , Mioblastos Cardíacos/patologia , Fosfofrutoquinase-2/genética , Regulação para Cima
7.
Basic Res Cardiol ; 112(2): 18, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28210871

RESUMO

We have recently demonstrated that repeated administrations of c-kitPOS cardiac progenitor cells (CPCs) have cumulative beneficial effects in rats with old myocardial infarction (MI), resulting in markedly greater improvement in left ventricular (LV) function compared with a single administration. To determine whether this paradigm applies to other species and cell types, mice with a 3-week-old MI received one or three doses of cardiac mesenchymal cells (CMCs), a novel cell type that we have recently described. CMCs or vehicle were infused percutaneously into the LV cavity, 14 days apart. Compared with vehicle-treated mice, the single-dose group exhibited improved LV ejection fraction (EF) after the 1st infusion (consisting of CMCs) but not after the 2nd and 3rd (vehicle). In contrast, in the multiple-dose group, LV EF improved after each CMC infusion, so that at the end of the study, LV EF averaged 35.5 ± 0.7% vs. 32.7 ± 0.6% in the single-dose group (P < 0.05). The multiple-dose group also exhibited less collagen in the non-infarcted region vs. the single-dose group. Engraftment and differentiation of CMCs were negligible in both groups, indicating paracrine effects. These results demonstrate that, in mice with ischemic cardiomyopathy, the beneficial effects of three doses of CMCs are significantly greater than those of one dose, supporting the concept that multiple treatments are necessary to properly evaluate the full therapeutic potential of cell therapy. Thus, the repeated-treatment paradigm is not limited to c-kit POS CPCs or to rats, but applies to other cell types and species. The generalizability of this concept dramatically augments its significance.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Distribuição Aleatória
8.
Stem Cells ; 34(12): 2916-2929, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27501845

RESUMO

Histone deacetylase (HDAC) regulation is an essential process in myogenic differentiation. Inhibitors targeting the activity of specific HDAC family members have been shown to enhance the cardiogenic differentiation capacity of discrete progenitor cell types; a key property of donor cell populations contributing to their afforded benefits in cardiac cell therapy applications. The influence of HDAC inhibition on cardiac-derived mesenchymal stromal cell (CMC) transdifferentiation or the role of specific HDAC family members in dictating cardiovascular cell lineage specification has not been investigated. In the current study, the consequences of HDAC inhibition on patient-derived CMC proliferation, cardiogenic program activation, and cardiovascular differentiation/cell lineage specification were investigated using pharmacologic and genetic targeting approaches. Here, CMCs exposed to the pan-HDAC inhibitor sodium butyrate exhibited induction of a cardiogenic transcriptional program and heightened expression of myocyte and endothelial lineage-specific markers when coaxed to differentiate in vitro. Further, shRNA knockdown screens revealed CMCs depleted of HDAC1 to promote the induction of a cardiogenic transcriptional program characterized by enhanced expression of cardiomyogenic- and vasculogenic-specific markers, a finding which depended on and correlated with enhanced acetylation and stabilization of p53. Cardiogenic gene activation and elevated p53 expression levels observed in HDAC1-depleted CMCs were associated with improved aptitude to assume a cardiomyogenic/vasculogenic cell-like fate in vitro. These results suggest that HDAC1 depletion-induced p53 expression alters CMC cell fate decisions and identify HDAC1 as a potential exploitable target to facilitate CMC-mediated myocardial repair in ischemic cardiomyopathy. Stem Cells 2016;34:2916-2929.


Assuntos
Epigênese Genética , Histona Desacetilase 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Biomarcadores/metabolismo , Ácido Butírico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Transcrição Gênica/efeitos dos fármacos
9.
J Biol Chem ; 290(52): 31013-24, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26527687

RESUMO

Protein O-GlcNAcylation, which is controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), has emerged as an important posttranslational modification that may factor in multiple diseases. Until recently, it was assumed that OGT/OGA protein expression was relatively constant. Several groups, including ours, have shown that OGT and/or OGA expression changes in several pathologic contexts, yet the cis and trans elements that regulate the expression of these enzymes remain essentially unexplored. Here, we used a reporter-based assay to analyze minimal promoters and leveraged in silico modeling to nominate several candidate transcription factor binding sites in both Ogt (i.e. the gene for OGT protein) and Mgea5 (i.e. the gene for OGA protein). We noted multiple E2F binding site consensus sequences in both promoters. We performed chromatin immunoprecipitation in both human and mouse cells and found that E2F1 bound to candidate E2F binding sites in both promoters. In HEK293 cells, we overexpressed E2F1, which significantly reduced OGT and MGEA5 expression. Conversely, E2F1-deficient mouse fibroblasts had increased Ogt and Mgea5 expression. Of the known binding partners for E2F1, we queried whether retinoblastoma 1 (Rb1) might be involved. Rb1-deficient mouse embryonic fibroblasts showed increased levels of Ogt and Mgea5 expression, yet overexpression of E2F1 in the Rb1-deficient cells did not alter Ogt and Mgea5 expression, suggesting that Rb1 is required for E2F1-mediated suppression. In conclusion, this work identifies and validates some of the promoter elements for mouse Ogt and Mgea5 genes. Specifically, E2F1 negatively regulates both Ogt and Mgea5 expression in an Rb1 protein-dependent manner.


Assuntos
Antígenos de Neoplasias/biossíntese , Fator de Transcrição E2F1/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Histona Acetiltransferases/biossíntese , Hialuronoglucosaminidase/biossíntese , N-Acetilglucosaminiltransferases/biossíntese , Elementos de Resposta/fisiologia , Células 3T3-L1 , Animais , Antígenos de Neoplasias/genética , Fator de Transcrição E2F1/genética , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Hialuronoglucosaminidase/genética , Camundongos , Camundongos Mutantes , N-Acetilglucosaminiltransferases/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
10.
Stem Cells ; 33(8): 2613-27, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25917428

RESUMO

Autologous transplantation of cardiac progenitor cells (CPCs) alleviates myocardial dysfunction in the damaged heart; however, the mechanisms that contribute to their reparative qualities remain poorly understood. In this study, we examined CPC metabolism to elucidate the metabolic pathways that regulate their proliferative capacity. In complete growth medium, undifferentiated CPCs isolated from adult mouse heart proliferated rapidly (Td = 13.8 hours). CPCs expressed the Glut1 transporter and their glycolytic rate was increased by high extracellular glucose (Glc) concentration, in the absence of insulin. Although high Glc concentrations did not stimulate proliferation, glutamine (Gln) increased CPC doubling time and promoted survival under conditions of oxidative stress. In comparison with Glc, pyruvate (Pyr) or BSA-palmitate, Gln, when provided as the sole metabolic substrate, increased ATP-linked and uncoupled respiration. Although fatty acids were not used as respiratory substrates when present as a sole carbon source, Gln-induced respiration was doubled in the presence of BSA-palmitate, suggesting that Gln stimulates fatty acid oxidation. Additionally, Gln promoted rapid phosphorylation of the mTORC1 substrate, p70S6k, as well as retinoblastoma protein, followed by induction of cyclin D1 and cdk4. Inhibition of either mTORC1 or glutaminolysis was sufficient to diminish CPC proliferation, and provision of cell permeable α-ketoglutarate in the absence of Gln increased both respiration and cell proliferation, indicating a key role of Gln anaplerosis in cell growth. These findings suggest that Gln, by enhancing mitochondrial function and stimulating mTORC1, increases CPC proliferation, and that interventions to increase Gln uptake or oxidation may improve CPC therapy.


Assuntos
Proliferação de Células/fisiologia , Glutamina/metabolismo , Miocárdio/metabolismo , Células-Tronco/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Glicólise/fisiologia , Camundongos , Proteínas Musculares/biossíntese , Miocárdio/citologia , Células-Tronco/citologia
11.
Stem Cells ; 33(12): 3596-607, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26299779

RESUMO

The regenerative potential of c-kit(+) cardiac stem cells (CSCs) is severely limited by the poor survival of cells after transplantation in the infarcted heart. We have previously demonstrated that preconditioning human CSCs (hCSCs) with the heme oxygenase-1 inducer, cobalt protoporphyrin (CoPP), has significant cytoprotective effects in vitro. Here, we examined whether preconditioning hCSCs with CoPP enhances CSC survival and improves cardiac function after transplantation in a model of myocardial infarction induced by a 45-minute coronary occlusion and 35-day reperfusion in immunodeficient mice. At 30 minutes of reperfusion, CoPP-preconditioned hCSCs(GFP+), hCSCs(GFP+), or medium were injected into the border zone. Quantitative analysis with real-time qPCR for the expression of the human-specific gene HLA revealed that the number of survived hCSCs was significantly greater in the preconditioned-hCSC group at 24 hours and 7 and 35 days compared with the hCSC group. Coimmunostaining of tissue sections for both green fluorescent protein (GFP) and human nuclear antigen further confirmed greater hCSC numbers at 35 days in the preconditioned-hCSC group. At 35 days, compared with the hCSC group, the preconditioned-hCSC group exhibited increased positive and negative left ventricular (LV) dP/dt, end-systolic elastance, and anterior wall/apical strain rate (although ejection fraction was similar), reduced LV remodeling, and increased proliferation of transplanted cells and of cells apparently committed to cardiac lineage. In conclusion, CoPP-preconditioning of hCSCs enhances their survival and/or proliferation, promotes greater proliferation of cells expressing cardiac markers, and results in greater improvement in LV remodeling and in indices of cardiac function after infarction.


Assuntos
Ativadores de Enzimas/farmacologia , Heme Oxigenase-1 , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Xenoenxertos , Humanos , Camundongos , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Células-Tronco/patologia
12.
J Biol Chem ; 289(43): 29665-76, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25183011

RESUMO

Derangements in metabolism and related signaling pathways characterize the failing heart. One such signal, O-linked ß-N-acetylglucosamine (O-GlcNAc), is an essential post-translational modification regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase (OGA), which modulate the function of many nuclear and cytoplasmic proteins. We recently reported reduced OGA expression in the failing heart, which is consistent with the pro-adaptive role of increased O-GlcNAcylation during heart failure; however, molecular mechanisms regulating these enzymes during heart failure remain unknown. Using miRNA microarray analysis, we observed acute and chronic changes in expression of several miRNAs. Here, we focused on miR-539 because it was predicted to target OGA mRNA. Indeed, co-transfection of the OGA-3'UTR containing reporter plasmid and miR-539 overexpression plasmid significantly reduced reporter activity. Overexpression of miR-539 in neonatal rat cardiomyocytes significantly suppressed OGA expression and consequently increased O-GlcNAcylation; conversely, the miR-539 inhibitor rescued OGA protein expression and restored O-GlcNAcylation. In conclusion, this work identifies the first target of miR-539 in the heart and the first miRNA that regulates OGA. Manipulation of miR-539 may represent a novel therapeutic target in the treatment of heart failure and other metabolic diseases.


Assuntos
Insuficiência Cardíaca/genética , MicroRNAs/metabolismo , Regulação para Cima/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Hipóxia Celular/genética , Regulação para Baixo/genética , Glicosilação , Células HEK293 , Testes de Função Cardíaca , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Ratos Sprague-Dawley
13.
Basic Res Cardiol ; 110(5): 503, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150250

RESUMO

It is commonly thought that the optimal method for intracoronary administration of cells is to stop coronary flow during cell infusion, in order to prolong cell/vascular wall contact, enhance adhesion, and promote extravasation of cells into the interstitial space. However, occlusion of a coronary artery with a balloon involves serious risks of vascular damage and/or dissection, particularly in non-stented segments such as those commonly found in patients with heart failure. It remains unknown whether the use of the stop-flow technique results in improved donor cell retention. Acute myocardial infarction was produced in 14 pigs. One to two months later, pigs received 10 million indium-111 oxyquinoline (oxine)-labeled c-kit(pos) human cardiac stem cells (hCSCs) via intracoronary infusion with (n = 7) or without (n = 7) balloon inflation. Pigs received cyclosporine to prevent acute graft rejection. Animals were euthanized 24 h later and hearts harvested for radioactivity measurements. With the stop-flow technique, the retention of hCSCs at 24 h was 5.41 ± 0.80 % of the injected dose (n = 7), compared with 4.87 ± 0.62 % without coronary occlusion (n = 7), (P = 0.60). When cells are delivered intracoronarily in a clinically relevant porcine model of chronic ischemic cardiomyopathy, the use of the stop-flow technique does not result in greater myocardial cell retention at 24 h compared with non-occlusive infusion. These results have practical implications for the design of cell therapy trials. Our observations suggest that the increased risk of complications secondary to coronary manipulation and occlusion is not warranted.


Assuntos
Isquemia Miocárdica/cirurgia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Proteínas Proto-Oncogênicas c-kit , Sus scrofa
14.
FEBS Open Bio ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073037

RESUMO

Cytoskeleton-associated protein 2-like (CKAP2L) is a paralogue of cytoskeleton-associated protein 2 (CKAP2). We characterized the expression pattern, subcellular localization, and microtubule-stabilizing properties of human CKAP2L. The levels of both CKAP2L transcript and protein were cell cycle phase-dependent, peaking during the G2/M phase and relatively high in certain human tissues, including testis, intestine, and spleen. CKAP2L protein was detectable in all human cancer cell lines we tested. CKAP2L localized to the mitotic spindle apparatus during mitosis, as reported previously. During interphase, however, CKAP2L localized mainly to the nucleus. Ectopic overexpression of CKAP2L resulted in 'microtubule bundling', and, consequently, an elevated CKAP2L level led to prolonged mitosis. These findings support the mitotic role of CKAP2L during the human cell cycle.

15.
Cardiovasc Toxicol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851663

RESUMO

Metabolic dysfunction associated-steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) is the liver manifestation of metabolic syndrome, which is characterized by insulin resistance, hyperglycemia, hypertension, dyslipidemia, and/or obesity. Environmental pollutant exposure has been recently identified as a risk factor for developing MASH. Heterocyclic amines (HCAs) are mutagens generated when cooking meat at high temperatures or until well-done. Recent epidemiological studies reported that dietary HCA exposure may be linked to insulin resistance and type II diabetes, and we recently reported that HCAs induce insulin resistance and glucose production in human hepatocytes. However, no previous studies have examined the effects of HCAs on hepatic lipid homeostasis. In the present study, we assessed the effects of two common HCAs, MeIQx (2-amino-3, 8-dimethylimidazo [4, 5-f] quinoxaline) and PhIP (2-amino-1-methyl-6-phenylimidazo[4, 5-b] pyridine), on lipid homeostasis in cryopreserved human hepatocytes. Exposure to a single concentration of 25 µM MeIQx or PhIP in human hepatocytes led to dysregulation of lipid homeostasis, typified by significant increases in lipid droplets and triglycerides. PhIP significantly increased expression of lipid droplet-associated genes, PNPLA3 and HSD17B13, and both HCAs significantly increased PLIN2. Exposure to MeIQx or PhIP also significantly increased expression of several key genes involved in lipid synthesis, transport and metabolism, including FASN, DGAT2, CPT1A, SCD, and CD36. Furthermore, both MeIQx and PhIP significantly increased intracellular cholesterol and decreased expression of PON1 which is involved in cholesterol efflux. Taken together, these results suggest that HCAs dysregulate lipid production, metabolism, and storage. The current study demonstrates, for the first time, that HCA exposure may lead to fat accumulation in hepatocytes, which may contribute to hepatic insulin resistance and MASH.

16.
Basic Res Cardiol ; 108(3): 346, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23549981

RESUMO

Although transplantation of c-kit+ cardiac stem cells (CSCs) alleviates post-myocardial infarction left ventricular dysfunction, there are no reliable methods that enable measurement of the absolute number of CSCs that persist in the recipient heart. To overcome this limitation, we developed a highly sensitive and accurate method to quantify the absolute number of murine CSCs after transplantation. This method has two unique features: (1) real-time PCR-based detection of a novel male-specific, multiple-copy gene, Rbmy, which significantly increases the sensitivity of detection of male donor cells in a female recipient, and (2) an internal standard, which permits quantification of the absolute number of CSCs as well as the total number of cells in the recipient organ. Female C57BL/6 mice underwent coronary occlusion and reperfusion; 2 days later, 10(5) male mouse CSCs were injected intramyocardially. Tissues were analyzed by real-time PCR at serial time points. In the risk region, >75 % of CSCs present at 5 min were lost in the ensuing 24 h; only 7.6 ± 2.1 % of the CSCs present at 5 min could still be found at 7 days after transplantation and only 2.8 ± 0.5 % (i.e., 1,224 ± 230 cells/heart) at 35 days. Thus, even after direct intramyocardial injection, the total number of CSCs that remain in the murine heart is minimal (at 24 h, ~10 % of the cells injected; at 35 days, ~1 %). This new quantitative method of stem cell detection, which enables measurement of absolute cell number, should be useful to optimize cell-based therapies, not only for CSCs but also for other stem cells and other organs.


Assuntos
Rastreamento de Células/métodos , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/transplante , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Transplante de Células-Tronco , Animais , Biomarcadores/metabolismo , Contagem de Células , Rastreamento de Células/normas , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes , Fatores de Tempo
17.
Biomedicines ; 11(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509705

RESUMO

The endoplasmic reticulum (ER) is a multifunctional organelle playing a vital role in maintaining cell homeostasis, and disruptions to its functions can have detrimental effects on cells. Dysregulated ER stress and the unfolded protein response (UPR) have been linked to various human diseases. For example, ER stress and the activation of the UPR signaling pathways in intestinal epithelial cells can either exacerbate or alleviate the severity of inflammatory bowel disease (IBD), contingent on the degree and conditions of activation. Our recent studies have shown that EPICERTIN, a recombinant variant of the cholera toxin B subunit containing an ER retention motif, can induce a protective UPR in colon epithelial cells, subsequently promoting epithelial restitution and mucosal healing in IBD models. These findings support the idea that compounds modulating UPR may be promising pharmaceutical candidates for the treatment of the disease. In this review, we summarize our current understanding of the ER stress and UPR in IBD, focusing on their roles in maintaining cell homeostasis, dysregulation, and disease pathogenesis. Additionally, we discuss therapeutic strategies that promote the cytoprotection of colon epithelial cells and reduce inflammation via pharmacological manipulation of the UPR.

18.
Toxicol Lett ; 383: 192-195, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423373

RESUMO

Heterocyclic amines (HCAs) are mutagenic compounds found in cooked meat. Recent epidemiological studies reported significant associations between dietary HCA exposure and insulin resistance and type II diabetes, and we recently reported that HCAs induce insulin resistance and glucose production in human hepatocytes. It is well known that HCAs require hepatic bioactivation by cytochrome P450 1A2 (CYP1A2) and N-acetyltransferase 2 (NAT2). NAT2 expresses a well-defined genetic polymorphism in humans that, depending on the combination of NAT2 alleles, correlates to rapid, intermediate, or slow acetylator phenotype that exhibits differential metabolism of aromatic amines and HCAs. No previous studies have examined the role of NAT2 genetic polymorphism in the context of HCA-mediated induction of glucose production. In the present study, we assessed the effect of three HCAs commonly found in cooked meat (2-amino-3,4-dimethylimidazo[4,5-f]quinoline [MeIQ], 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline [MeIQx], and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine [PhIP]) on glucose production in cryopreserved human hepatocytes with slow, intermediate, or rapid NAT2 acetylator phenotype. HCA treatment did not affect glucose production in slow NAT2 acetylator hepatocytes, while a slight increase in glucose production was observed in intermediate NAT2 acetylators treated with MeIQ or MeIQx. However, significant increases in glucose production were observed in rapid NAT2 acetylators following each HCA. The current findings suggest that individuals who are rapid NAT2 acetylators may be at a greater risk of developing hyperglycemia and insulin resistance following dietary exposure to HCAs.


Assuntos
Aminas , Arilamina N-Acetiltransferase , Diabetes Mellitus Tipo 2 , Compostos Heterocíclicos , Resistência à Insulina , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Aminas/toxicidade , Aminas/metabolismo , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Compostos Heterocíclicos/metabolismo , Polimorfismo Genético
19.
Front Pharmacol ; 14: 1091976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077812

RESUMO

Arylamine N-acetyltransferase 2 (NAT2) is a phase II metabolic enzyme, best known for metabolism of aromatic amines and hydrazines. Genetic variants occurring in the NAT2 coding region have been well-defined and are known to affect the enzyme activity or protein stability. Individuals can be categorized into rapid, intermediate, and slow acetylator phenotypes that significantly alter their ability to metabolize arylamines, including drugs (e.g., isoniazid) and carcinogens (e.g., 4-aminobiphenyl). However, functional studies on non-coding or intergenic variants of NAT2 are lacking. Multiple, independent genome wide association studies (GWAS) have reported that non-coding or intergenic variants of NAT2 are associated with elevated plasma lipid and cholesterol levels, as well as cardiometabolic disorders, suggesting a novel cellular role of NAT2 in lipid and cholesterol homeostasis. The current review highlights and summarizes GWAS reports that are relevant to this association. We also present a new finding that seven, non-coding, intergenic NAT2 variants (i.e., rs4921913, rs4921914, rs4921915, rs146812806, rs35246381, rs35570672, and rs1495741), which have been associated with plasma lipid and cholesterol levels, are in linkage disequilibrium with one another, and thus form a novel haplotype. The dyslipidemia risk alleles of non-coding NAT2 variants are associated with rapid NAT2 acetylator phenotype, suggesting that differential systemic NAT2 activity might be a risk factor for developing dyslipidemia. The current review also discusses the findings of recent reports that are supportive of the role of NAT2 in lipid or cholesterol synthesis and transport. In summary, we review data suggesting that human NAT2 is a novel genetic factor that influences plasma lipid and cholesterol levels and alters the risk of cardiometabolic disorders. The proposed novel role of NAT2 merits further investigations.

20.
J Cancer Res Clin Oncol ; 149(8): 5047-5060, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36329350

RESUMO

PURPOSE: Arylamine N-acetyltransferase 1 (NAT1), a phase II metabolic enzyme, is frequently upregulated in breast cancer. Inhibition or depletion of NAT1 leads to growth retardation in breast cancer cells in vitro and in vivo. A previous metabolomics study of MDA-MB-231 breast cancer cells suggests that NAT1 deletion leads to a defect in de novo pyrimidine biosynthesis. In the present study, we observed that NAT1 deletion results in upregulation of cytidine deaminase (CDA), which is involved in the pyrimidine salvage pathway, in multiple breast cancer cell lines (MDA-MB-231, MCF-7 and ZR-75-1). We hypothesized that NAT1 KO MDA-MB-231 cells show differential sensitivity to drugs that either inhibit cellular pyrimidine homeostasis or are metabolized by CDA. METHODS: The cells were treated with (1) inhibitors of dihydroorotate dehydrogenase or CDA (e.g., teriflunomide and tetrahydrouridine); (2) pyrimidine/nucleoside analogs (e.g., gemcitabine and 5-azacytidine); and (3) naturally occurring, modified cytidines (e.g., 5-formyl-2'-deoxycytidine; 5fdC). RESULTS: Although NAT1 KO cells failed to show differential sensitivity to nucleoside analogs that are metabolized by CDA, they were markedly more sensitive to 5fdC which induces DNA damage in the presence of high CDA activity. Co-treatment with 5fdC and a CDA inhibitor, tetrahydrouridine, abrogated the increase in 5fdC cytotoxicity in NAT1 KO cells, suggesting that the increased sensitivity of NAT1 KO cells to 5fdC is dependent on their increased CDA activity. CONCLUSIONS: The present findings suggest a novel therapeutic strategy to treat breast cancer with elevated NAT1 expression. For instance, NAT1 inhibition may be combined with cytotoxic nucleosides (e.g., 5fdC) for breast cancer treatment.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Mama , Humanos , Feminino , Citidina Desaminase/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Tetra-Hidrouridina/farmacologia , Regulação para Cima , Pirimidinas/farmacologia , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA