RESUMO
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are genetic disorders with lifespan risk for neuropsychiatric disorders. Microdeletions and duplications are associated with neurocognitive deficits, yet few studies compared these groups using the same measures to address confounding measurement differences. We report a prospective international collaboration applying the same computerized neurocognitive assessment, the Penn Computerized Neurocognitive Battery (CNB), administered in a multi-site study on rare genomic disorders: 22q11.2 deletions (n = 492); 22q11.2 duplications (n = 106); 16p11.2 deletion (n = 117); and 16p11.2 duplications (n = 46). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and psychomotor speed. Accuracy and speed for each domain were included as dependent measures in a mixed-model repeated measures analysis. Locus (22q11.2, 16p11.2) and Copy number (deletion/duplication) were grouping factors and Measure (accuracy, speed) and neurocognitive domain were repeated measures factors, with Sex and Site as covariates. We also examined correlation with IQ. We found a significant Locus × Copy number × Domain × Measure interaction (p = 0.0004). 22q11.2 deletions were associated with greater performance accuracy deficits than 22q11.2 duplications, while 16p11.2 duplications were associated with greater specific deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed compared to deletions. Performance profiles differed among the groups with particularly poor memory performance of the 22q11.2 deletion group while the 16p11.2 duplication group had greatest deficits in complex cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. Deletions and duplications of 22q11.2 and 16p11.2 have differential effects on accuracy and speed of neurocognition indicating locus specificity of performance profiles. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome, and can only be established in large-scale international consortia using the same neurocognitive assessment. Future studies could aim to link performance profiles to clinical features and brain function.
RESUMO
Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However, ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.
Assuntos
Transtorno do Espectro Autista/genética , Deleção de Genes , Duplicação Gênica , Alelos , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Criança , Variações do Número de Cópias de DNA , Feminino , Frequência do Gene , Rearranjo Gênico , Loci Gênicos , Genoma Humano , Técnicas de Genotipagem , Humanos , Mutação INDEL , Masculino , Análise em Microsséries , Dados de Sequência Molecular , Linhagem , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Rare recurrent copy number variants (CNVs) at chromosomal loci 22q11.2 and 16p11.2 are among the most common rare genetic disorders associated with significant risk for neuropsychiatric disorders across the lifespan. Microdeletions and duplications in these loci are associated with neurocognitive deficits, yet there are few studies comparing these groups using the same measures. We address this gap in a prospective international collaboration applying the same computerized neurocognitive assessment. The Penn Computerized Neurocognitive Battery (CNB) was administered in a multi-site study on rare genomic disorders: 22q11.2 deletion (n = 397); 22q11.2 duplication (n = 77); 16p11.2 deletion (n = 94); and 16p11.2 duplication (n = 26). Domains examined include executive functions, episodic memory, complex cognition, social cognition, and sensori-motor speed. Accuracy and speed for each neurocognitive domain were included as dependent measures in a mixed-model repeated measures analysis, with locus (22q11.2, 16p11.2) and copy number (deletion/duplication) as grouping factors and neurocognitive domain as a repeated measures factor, with age and sex as covariates. We also examined correlation with IQ and site effects. We found that 22q11.2 deletions were associated with greater deficits in overall performance accuracy than 22q11.2 duplications, while 16p11.2 duplications were associated with greater deficits than 16p11.2 deletions. Duplications at both loci were associated with reduced speed. Performance profiles differed among the groups with particularly poor performance of 16p11.2 duplication on non-verbal reasoning and social cognition. Average accuracy on the CNB was moderately correlated with Full Scale IQ. No site effects were observed. Deletions and duplications of 22q11.2 and 16p11.2 have varied effects on neurocognition indicating locus specificity, with performance profiles differing among the groups. These profile differences can help inform mechanistic substrates to heterogeneity in presentation and outcome. Future studies could aim to link performance profiles to clinical features and brain function.
RESUMO
The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Criança , Família , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Herança Multifatorial/genéticaRESUMO
De novo mutations arising on the paternal chromosome make the largest known contribution to autism risk, and correlate with paternal age at the time of conception. The recurrence risk for autism spectrum disorders is substantial, leading many families to decline future pregnancies, but the potential impact of assessing parental gonadal mosaicism has not been considered. We measured sperm mosaicism using deep-whole-genome sequencing, for variants both present in an offspring and evident only in father's sperm, and identified single-nucleotide, structural and short tandem-repeat variants. We found that mosaicism quantification can stratify autism spectrum disorders recurrence risk due to de novo mutations into a vast majority with near 0% recurrence and a small fraction with a substantially higher and quantifiable risk, and we identify novel mosaic variants at risk for transmission to a future offspring. This suggests, therefore, that genetic counseling would benefit from the addition of sperm mosaicism assessment.
Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Mosaicismo , Espermatozoides/metabolismo , Transtorno Autístico/sangue , Feminino , Humanos , Masculino , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Recidiva , Fatores de RiscoRESUMO
A copy-number variant (CNV) of 16p11.2 encompassing 30 genes is associated with developmental and psychiatric disorders, head size, and body mass. The genetic mechanisms that underlie these associations are not understood. To determine the influence of 16p11.2 genes on development, we investigated the effects of CNV on craniofacial structure in humans and model organisms. We show that deletion and duplication of 16p11.2 have "mirror" effects on specific craniofacial features that are conserved between human and rodent models of the CNV. By testing dosage effects of individual genes on the shape of the mandible in zebrafish, we identify seven genes with significant effects individually and find evidence for others when genes were tested in combination. The craniofacial phenotypes of 16p11.2 CNVs represent a model for studying the effects of genes on development, and our results suggest that the associated facial gestalts are attributable to the combined effects of multiple genes.
Assuntos
Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Anormalidades Craniofaciais/genética , Variações do Número de Cópias de DNA/genética , Deficiência Intelectual/genética , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Feminino , Humanos , MasculinoRESUMO
The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from de novo mutations in variant-intolerant genes. We hypothesize that rare inherited structural variants in cis-regulatory elements (CRE-SVs) of these genes also contribute to ASD. We investigated this by assessing the evidence for natural selection and transmission distortion of CRE-SVs in whole genomes of 9274 subjects from 2600 families affected by ASD. In a discovery cohort of 829 families, structural variants were depleted within promoters and untranslated regions, and paternally inherited CRE-SVs were preferentially transmitted to affected offspring and not to their unaffected siblings. The association of paternal CRE-SVs was replicated in an independent sample of 1771 families. Our results suggest that rare inherited noncoding variants predispose children to ASD, with differing contributions from each parent.