Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(18): 9922-9931, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312818

RESUMO

The outer segments (OS) of rod and cone photoreceptor cells are specialized sensory cilia that contain hundreds of opsin-loaded stacked membrane disks that enable phototransduction. The biogenesis of these disks is initiated at the OS base, but the driving force has been debated. Here, we studied the function of the protein encoded by the photoreceptor-specific gene C2orf71, which is mutated in inherited retinal dystrophy (RP54). We demonstrate that C2orf71/PCARE (photoreceptor cilium actin regulator) can interact with the Arp2/3 complex activator WASF3, and efficiently recruits it to the primary cilium. Ectopic coexpression of PCARE and WASF3 in ciliated cells results in the remarkable expansion of the ciliary tip. This process was disrupted by small interfering RNA (siRNA)-based down-regulation of an actin regulator, by pharmacological inhibition of actin polymerization, and by the expression of PCARE harboring a retinal dystrophy-associated missense mutation. Using human retinal organoids and mouse retina, we observed that a similar actin dynamics-driven process is operational at the base of the photoreceptor OS where the PCARE module and actin colocalize, but which is abrogated in Pcare-/- mice. The observation that several proteins involved in retinal ciliopathies are translocated to these expansions renders it a potential common denominator in the pathomechanisms of these hereditary disorders. Together, our work suggests that PCARE is an actin-associated protein that interacts with WASF3 to regulate the actin-driven expansion of the ciliary membrane at the initiation of new outer segment disk formation.


Assuntos
Cílios/genética , Distrofias de Cones e Bastonetes/genética , Proteínas do Olho/genética , Segmento Externo da Célula Bastonete/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/genética , Animais , Cílios/patologia , Distrofias de Cones e Bastonetes/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Segmento Externo da Célula Bastonete/patologia
2.
Gastroenterology ; 154(4): 1080-1095, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29162437

RESUMO

BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development.


Assuntos
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutação de Sentido Incorreto , Síndrome de Alagille/metabolismo , Síndrome de Alagille/patologia , Animais , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Diferenciação Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Células HEK293 , Humanos , Proteína Jagged-1/metabolismo , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfogênese , Organoides , Fenótipo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Transdução de Sinais , Transfecção
3.
Stem Cell Res ; 79: 103481, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38924972

RESUMO

GCDH encodes for the enzyme catalyzing the sixth step of the lysine degradation pathway. Autosomal recessive variants in GCDH are associated with glutaric aciduria type I (GA1), of which a wide genotypic spectrum of pathogenic variants have been described. In this study, hiPSC lines derived from four GA1 patients with different genotypes were generated and fully characterized. Two patients carry compound heterozygous variants in GCDH, while the other two patients carry a variant in homozygosis. These hiPSC lines can significantly contribute to better understand the molecular mechanism underlying GA1 and provide excellent models for the development of new therapeutic strategies.

4.
Stem Cell Res ; 79: 103480, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38936157

RESUMO

ALDH7A1 encodes for the enzyme catalyzing the third step of the lysine degradation pathway. Biallelic pathogenic variants in ALDH7A1 are associated with pyridoxine dependent epilepsy (PDE), of which the c.1279G>C (p.Glu427Gln) variant is the most commonly reported variant and is carried by 30% of PDE patients with European ancestry. In this study, hiPSC lines derived from four PDE patients carrying the c.1279G>C variant in homozygosis in ALDH7A1 were generated and fully characterized. These hiPSC lines can contribute to better understand the molecular mechanism of disease underlying PDE as well as serving as a model system to evaluate new therapeutic strategies.

5.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429068

RESUMO

Pathogenic variants in RPE65 lead to retinal diseases, causing a vision impairment. In this work, we investigated the pathomechanism behind the frequent RPE65 variant, c.11+5G>A. Previous in silico predictions classified this change as a splice variant. Our prediction using novel software's suggested a 124-nt exon elongation containing a premature stop codon. This elongation was validated using midigenes-based approaches. Similar results were observed in patient-derived induced pluripotent stem cells (iPSC) and photoreceptor precursor cells. However, the splicing defect in all cases was detected at low levels and thereby does not fully explain the recessive condition of the resulting disease. Long-read sequencing discarded other rearrangements or variants that could explain the diseases. Subsequently, a more relevant model was employed: iPSC-derived retinal pigment epithelium (RPE) cells. In patient-derived iPSC-RPE cells, the expression of RPE65 was strongly reduced even after inhibiting a nonsense-mediated decay, contradicting the predicted splicing defect. Additional experiments demonstrated a cell-specific gene expression reduction due to the presence of the c.11+5G>A variant. This decrease also leads to the lack of the RPE65 protein, and differences in size and pigmentation between the patient and control iPSC-RPE. Altogether, our data suggest that the c.11+5G>A variant causes a cell-specific defect in the expression of RPE65 rather than the anticipated splicing defect which was predicted in silico.


Assuntos
Células-Tronco Pluripotentes Induzidas , Splicing de RNA , Humanos , Splicing de RNA/genética , Epitélio Pigmentado da Retina/metabolismo , Éxons/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Invest Ophthalmol Vis Sci ; 61(2): 39, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32097476

RESUMO

Purpose: Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. Methods: Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. Results: Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. Conclusions: Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Vitreorretinopatias Exsudativas Familiares , Vasos Retinianos/patologia , Animais , Proteínas de Ligação a DNA/genética , Vitreorretinopatias Exsudativas Familiares/genética , Vitreorretinopatias Exsudativas Familiares/fisiopatologia , Mutação de Sentido Incorreto , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA