Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(7): 1297-1311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493355

RESUMO

The wide variation in muscle fibre type distribution across individuals, along with the very different energy consumption rates in slow versus fast muscle fibres, suggests that muscle fibre typology contributes to inter-individual differences in metabolic rate during exercise. However, this has been hard to demonstrate due to the gap between a single muscle fibre and full-body exercises. We investigated the isolated effect of triceps surae muscle contraction velocity on whole-body metabolic rate during cyclic contractions in individuals a priori selected for their predominantly slow (n = 11) or fast (n = 10) muscle fibre typology by means of proton magnetic resonance spectroscopy (1H-MRS). Subsequently, we examined their whole-body metabolic rate during walking and running at 2 m/s, exercises with comparable metabolic rates but distinct triceps surae muscle force and velocity demands (walking: low force, high velocity; running: high force, low velocity). Increasing triceps surae contraction velocity during cyclic contractions elevated net whole-body metabolic rate for both typology groups. However, the slow group consumed substantially less net metabolic energy at the slowest contraction velocity, but the metabolic difference between groups diminished at faster velocities. Consistent with the more economic force production during slow contractions, the slow group exhibited lower metabolic rates than the fast group while running, whereas metabolic rates were similar during walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rates. KEY POINTS: Muscle fibre typology is often suggested to affect whole-body metabolic rate, yet convincing in vivo evidence is lacking. Using isolated plantar flexor muscle contractions in individuals a priori selected for their predominantly slow or fast muscle fibre typology, we demonstrated that having predominantly slow muscle fibres provides a metabolic advantage during slow muscle contractions, but this benefit disappeared at faster contractions. We extended these results to full-body exercises, where we demonstrated that higher proportions of slow fibres associated with better economy during running but not when walking. These findings provide important insights into the influence of muscle fibre typology on whole-body metabolic rate and emphasize the importance of considering muscle mechanical demands to understand muscle fibre typology related differences in whole-body metabolic rate.


Assuntos
Contração Muscular , Corrida , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Perna (Membro) , Corrida/fisiologia
2.
Scand J Med Sci Sports ; 34(6): e14687, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923087

RESUMO

INTRODUCTION/PURPOSE: Shoe longitudinal bending stiffness (LBS) is often considered to influence running economy (RE) and thus, running performance. However, previous results are mixed and LBS levels have not been studied in advanced footwear technology (AFT). The purpose of this study was to evaluate the effects of increased LBS from curved carbon fiber plates embedded within an AFT midsole compared to a traditional running shoe on RE and spatiotemporal parameters. METHODS: Twenty-one male trained runners completed three times 4 min at 13 km/h with two experimental shoe models with a curved carbon fiber plate embedded in an AFT midsole with different LBS values (Stiff: 35.5 N/mm and Stiffest: 43.1 N/mm), and a Control condition (no carbon fiber plate: 20.1 N/mm). We measured energy cost of running (W/kg) and spatiotemporal parameters in one visit. RESULTS: RE improved for the Stiff shoe condition (15.71 ± 0.95 W/kg; p < 0.001; n2 = 0.374) compared to the Control condition (16.13 ± 1.08 W/kg; 2.56%) and Stiffest condition (16.03 ± 1.19 W/kg; 1.98%). However, we found no significant differences between the Stiffest and Control conditions. Moreover, there were no spatiotemporal differences between shoe conditions. CONCLUSION: Changes in LBS in AFT influences RE suggesting that moderately stiff shoes have the most effective LBS to improve RE in AFT compared to very stiff shoes and traditional, flexible shoe conditions while running at 13 km/h.


Assuntos
Metabolismo Energético , Desenho de Equipamento , Corrida , Sapatos , Humanos , Corrida/fisiologia , Masculino , Metabolismo Energético/fisiologia , Adulto , Fenômenos Biomecânicos , Adulto Jovem , Fibra de Carbono
3.
Scand J Med Sci Sports ; 34(1): e14526, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858294

RESUMO

BACKGROUND: Ethylene and vinyl acetate (EVA) and polyether block amide (PEBA) are recently the most widely used materials for advanced footwear technology (AFT) that has been shown to improve running economy (RE). This study investigated the effects of these midsole materials on RE and biomechanics, in both fresh and worn state (after 450 km). METHODS: Twenty-two male trained runners participated in this study. Subjects ran four 4-min trials at 13 km‧h-1 with both fresh EVA and PEBA AFT and with the same models with 450 km of wear using a randomized crossover experimental design. We measured energy cost of running (W/kg), spatiotemporal, and neuromuscular parameters. RESULTS: There were significant differences in RE between conditions (p = 0.01; n2 = 0.17). There was a significant increase in energy cost in the worn PEBA condition compared with new (15.21 ± 1.01 and 14.87 ± 0.99 W/kg; p < 0.05; ES = 0.54), without differences between worn EVA (15.13 ± 1.14 W/kg; p > 0.05), and new EVA (15.15 ± 1.13 w/kg; ES = 0.02). The increase in energy cost between new and worn was significantly higher for the PEBA shoes (0.32 ± 0.38 W/kg) but without significant increase for the EVA shoes (0.06 ± 0.58 W/kg) (p < 0.01; ES = 0.51) with changes in step frequency and step length. The new PEBA shoes had lower energy cost than the new EVA shoes (p < 0.05; ES = 0.27) with significant differences between conditions in contact time. CONCLUSION: There is a clear RE advantage of incorporating PEBA versus EVA in an AFT when the models are new. However, after 450 km of use, the PEBA and EVA shoes had similar RE.


Assuntos
Ácidos Borônicos , Corrida , Humanos , Masculino , Fenômenos Biomecânicos , Estudos Cross-Over , Sapatos
4.
J Neurophysiol ; 129(4): 900-913, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883759

RESUMO

Walking on a split-belt treadmill elicits an adaptation response that changes baseline step length asymmetry. The underlying causes of this adaptation, however, are difficult to determine. It has been proposed that effort minimization may drive this adaptation, based on the idea that adopting longer steps on the fast belt, or positive step length asymmetry (SLA), can cause the treadmill to exert net-positive mechanical work on a bipedal walker. However, humans walking on split-belt treadmills have not been observed to reproduce this behavior when allowed to freely adapt. To determine if an effort-minimization motor control strategy would result in experimentally observed adaptation patterns, we conducted simulations of walking on different combinations of belt speeds with a human musculoskeletal model that minimized muscle excitations and metabolic rate. The model adopted increasing amounts of positive SLA and decreased its net metabolic rate with increasing belt speed difference, reaching +42.4% SLA and -5.7% metabolic rate relative to tied-belt walking at our maximum belt speed ratio of 3:1. These gains were primarily enabled by an increase in braking work and a reduction in propulsion work on the fast belt. The results suggest that a purely effort minimization driven split-belt walking strategy would involve substantial positive SLA, and that the lack of this characteristic in human behavior points to additional factors influencing the motor control strategy, such as aversion to excessive joint loads, asymmetry, or instability.NEW & NOTEWORTHY Behavioral observations of split-belt treadmill adaptation have been inconclusive toward its underlying causes. To estimate gait patterns when driven exclusively by one of these possible underlying causes, we simulated split-belt treadmill walking with a musculoskeletal model that minimized its summed muscle excitations. Our model took significantly longer steps on the fast belt and reduced its metabolic rate below tied-belt walking, unlike experimental observations. This suggests that asymmetry is energetically optimal, but human adaptation involves additional factors.


Assuntos
Marcha , Caminhada , Humanos , Caminhada/fisiologia , Marcha/fisiologia , Teste de Esforço , Metabolismo Energético , Adaptação Fisiológica/fisiologia , Fenômenos Biomecânicos
5.
J Strength Cond Res ; 37(12): 2496-2503, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015737

RESUMO

ABSTRACT: Looney, DP, Hoogkamer, W, Kram, R, Arellano, CJ, and Spiering, BA. Estimating metabolic energy expenditure during level running in healthy, military-age women and men. J Strength Cond Res 37(12): 2496-2503, 2023-Quantifying the rate of metabolic energy expenditure (M) of varied aerobic exercise modalities is important for optimizing fueling and performance and maintaining safety in military personnel operating in extreme conditions. However, although equations exist for estimating oxygen uptake during running, surprisingly, there are no general equations that estimate M. Our purpose was to generate a general equation for estimating M during level running in healthy, military-age (18-44 years) women and men. We compiled indirect calorimetry data collected during treadmill running from 3 types of sources: original individual subject data (n = 45), published individual subject data (30 studies; n = 421), and published group mean data (20 studies, n = 619). Linear and quadratic equations were fit on the aggregated data set using a mixed-effects modeling approach. A chi-squared (χ2) difference test was conducted to determine whether the more complex quadratic equation was justified (p < 0.05). Our primary indicator of model goodness-of-fit was the root-mean-square deviation (RMSD). We also examined whether individual characteristics (age, height, body mass, and maximal oxygen uptake [V̇O2max]) could minimize prediction errors. The compiled data set exhibited considerable variability in M (14.54 ± 3.52 W·kg-1), respiratory exchange ratios (0.89 ± 0.06), and running speeds (3.50 ± 0.86 m·s-1). The quadratic regression equation had reduced residual sum of squares compared with the linear fit (χ2, 3,484; p < 0.001), with higher combined accuracy and precision (RMSD, 1.31 vs. 1.33 W·kg-1). Age (p = 0.034), height (p = 0.026), and body mass (p = 0.019) were associated with the magnitude of under and overestimation, which was not the case for V̇O2max (p = 0.898). The newly derived running energy expenditure estimation (RE3) model accurately predicts level running M at speeds from 1.78 to 5.70 m·s-1 in healthy, military-age women and men. Users can rely on the following equations for improved predictions of running M as a function of running speed (S, m·s-1) in either watts (W·kg-1 = 4.43 + 1.51·S + 0.37·S2) or kilocalories per minute (kcal·kg-1·min-1 = 308.8 + 105.2·S + 25.58·S2).


Assuntos
Militares , Corrida , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Metabolismo Energético , Exercício Físico , Teste de Esforço , Oxigênio , Consumo de Oxigênio
6.
Scand J Med Sci Sports ; 32(10): 1444-1455, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35839378

RESUMO

While it is well recognized that the preferred stride frequency (PSF) in running closely corresponds to the metabolically optimal frequency, the underlying mechanisms are still unclear. Changes in joint kinematics when altering stride frequency will affect the muscle-tendon unit lengths and potentially the efficiency of muscles crossing these joints. Here, we investigated how fascicle kinematics and forces of the triceps surae muscle, a highly energy consuming muscle, are affected when running at different stride frequencies. Twelve runners ran on a force measuring treadmill, adopting five different frequencies (PSF; PSF ± 8%; PSF ± 15%), while we measured joint kinematics, whole-body energy expenditure, triceps surae muscle activity, and soleus (SOL; N = 10) and gastrocnemius medialis (GM; N = 12) fascicle kinematics. In addition, we used dynamic optimization to estimate SOL and GM muscle forces. We found that SOL and GM mean muscle fascicle length during stance followed an inverted U-relationship with the longest fascicle lengths occurring at PSF. Fascicle lengths were shortest at frequencies lower than PSF. In addition, average SOL force was greater at PSF-15% compared with PSF. Overall, our results suggest that reduced SOL and GM muscle fascicle lengths, associated with reduced muscle force potential, together with greater SOL force demand, contribute to the increased whole-body energy expenditure when running at lower than PSF. At higher stride frequencies, triceps surae muscle kinematics and force production were less affected suggesting that increased energy expenditure is rather related to higher cost of leg swing and greater cost of force production.


Assuntos
Perna (Membro) , Corrida , Fenômenos Biomecânicos/fisiologia , Humanos , Músculo Esquelético/fisiologia , Corrida/fisiologia , Tendões/fisiologia
7.
Eur J Appl Physiol ; 122(12): 2565-2574, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064982

RESUMO

PURPOSE: With few cycling races on the calendar in 2020 due to COVID-19, Everesting became a popular challenge: you select one hill and cycle up and down it until you reach the accumulated elevation of Mt. Everest (8,848 m or 29,029ft). With an almost infinite number of different hills across the world, the question arises what the optimal hill for Everesting would be. Here, we address the biomechanics and energetics of up- and downhill cycling to determine the characteristics of this optimal hill. METHODS: During uphill cycling, the mechanical power output equals the power necessary to overcome air resistance, rolling resistance, and work against gravity, and for a fast Everesting time, one should maximize this latter term. To determine the optimal section length (i.e., number of repetitions), we applied the critical power concept and assumed that the U-turn associated with an additional repetition comes with a 6 s time penalty. RESULTS: To use most mechanical power to overcoming gravity, slopes of at least 12% are most suitable, especially since gross efficiency seems only minimally diminished on steeper slopes. Next, we found 24 repetitions to be optimal, yet this number slightly depends on the assumptions made. Finally, we discuss other factors (fueling, altitude, fatigue) not incorporated in the model but also affecting Everesting performances. CONCLUSION: For a fast Everesting time, our model suggests to select a hill climb which preferably starts at (or close to) sea level, with a slope of 12-20% and length of 2-3 km.


Assuntos
COVID-19 , Humanos , Ciclismo , Fenômenos Biomecânicos , Altitude , Gravitação
8.
J Sports Sci ; 39(7): 754-759, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33176588

RESUMO

Eliud Kipchoge made two attempts to break the 2-hour marathon, in Monza and then Vienna. Here we analyse only the effects of course elevation profile and turn curvatures on his performances. We used publicly available data to determine the undulations in elevation and the radii of the curves on the course. With previously developed equations for the effects of velocity, slope, and curvature on oxygen uptake, we performed simulations to quantify how much the elevation changes and curves of the Vienna course affect a runner's oxygen uptake (at a fixed velocity) or velocity (at a fixed oxygen uptake). We estimate that, after the initial downhill benefit, the course led to an overall oxygen uptake penalty of only 0.03%. When compared to a perfectly level straight course, we estimate that the combined effects of the undulations and curves of the Vienna course incurred a penalty of just 1.37 seconds. Kipchoge ran 2:00:25 in Monza Italy. Comparison with the Monza course profile indicates a 46.2 second (1.09% oxygen uptake) advantage of Vienna's course while the fewer curves of Vienna contributed ~ 1 second. The Vienna course was very well-chosen because it minimized the negative effects of elevation changes and curves.Abbreviations: CoT: Oxygen cost of transport; CV˙O2: Curved rate of oxygen consumption; V˙O2: Rate of oxygen consumption; WA: World Athletics.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Planejamento Ambiental , Corrida de Maratona/fisiologia , Altitude , Áustria , Metabolismo Energético , Humanos , Itália , Masculino , Consumo de Oxigênio , Fatores de Tempo
9.
J Exp Biol ; 222(Pt 23)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31704899

RESUMO

Foot strike pattern affects ankle joint work and triceps surae muscle-tendon dynamics during running. Whether these changes in muscle-tendon dynamics also affect triceps surae muscle energy consumption is still unknown. In addition, as the triceps surae muscle accounts for a substantial amount of the whole-body metabolic energy consumption, changes in triceps surae energy consumption may affect whole-body metabolic energy consumption. However, direct measurements of muscle metabolic energy consumption during dynamic movements is difficult. Model-based approaches can be used to estimate individual muscle and whole-body metabolic energy consumption based on Hill type muscle models. In this study, we use an integrated experimental and dynamic optimization approach to compute muscle states (muscle forces, lengths, velocities, excitations and activations) of 10 habitual midfoot/forefoot striking and nine habitual rearfoot striking runners while running at 10 and 14 km h-1 The Achilles tendon stiffness of the musculoskeletal model was adapted to fit experimental ultrasound data of the gastrocnemius medialis muscle during ground contact. Next, we calculated triceps surae muscle and whole-body metabolic energy consumption using four different metabolic energy models provided in the literature. Neither triceps surae metabolic energy consumption (P>0.35) nor whole-body metabolic energy consumption (P>0.14) was different between foot strike patterns, regardless of the energy model used or running speed tested. Our results provide new evidence that midfoot/forefoot and rearfoot strike patterns are metabolically equivalent.


Assuntos
Metabolismo Energético , Pé/fisiologia , Músculo Esquelético/metabolismo , Corrida/fisiologia , Feminino , Humanos , Masculino
10.
Exerc Sport Sci Rev ; 45(1): 34-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27984329

RESUMO

Optimization of gait rehabilitation using split-belt treadmills critically depends on our understanding of the roles of somatosensory perception and sensorimotor recalibration in perceiving gait asymmetry and adapting to split-belt walking. Recent evidence justifies the hypothesis that perception of gait asymmetry is based mainly on detection of temporal mismatches between afferent inputs at the spinal level.


Assuntos
Adaptação Fisiológica , Marcha/fisiologia , Percepção/fisiologia , Caminhada/fisiologia , Cerebelo/fisiologia , Humanos , Córtex Sensório-Motor/fisiologia , Coluna Vertebral/fisiologia , Reabilitação do Acidente Vascular Cerebral
11.
Eur J Appl Physiol ; 117(10): 2021-2027, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28785797

RESUMO

PURPOSE: Historically, the efficiency of leg cycling has been difficult to change. However, arm cycling research indicates that relative crank angle changes can improve efficiency. Therefore, we investigated if leg cycling with different relative crank angles affects efficiency. METHODS: Ten healthy, male, recreational bicycle riders (27.8 ± 8.2 years, mean ± SD, mass 69.8 ± 3.2 kg) pedaled a pan-loaded cycle ergometer at a fixed power output of 150 watts at a cadence of 90 RPM. Each subject completed six, 5-min trials in random order at relative crank angles of 180°, 135°, 90°, 45°, 0°, and 180°. We averaged rates of oxygen uptake ([Formula: see text]) and carbon dioxide production ([Formula: see text]), and respiratory exchange ratio (RER) for the last 2 min of each trial. RESULTS: Crank angles other than 180° required a greater metabolic cost. As relative crank angle decreased from 180°, metabolic power monotonically increased by 1.6% at 135° to 8.2% greater when the relative crank angle was 0° (p < 0.001). CONCLUSIONS: We find that, unlike arm cycling, radically changing the relative crank angle on a bicycle from an out-of-phase (180°) to in-phase (0°) position decreases leg cycling efficiency by ~8%. We attribute the increase to changes in cost of breathing, muscle co-activation, trunk stabilization, power fluctuations, and possibly lifting the legs during the upstroke. Our findings may have relevance in the rehabilitation of patients recovering from stroke or spinal cord injury.


Assuntos
Ciclismo/fisiologia , Metabolismo Energético , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Adulto , Fenômenos Biomecânicos , Humanos , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/metabolismo , Troca Gasosa Pulmonar , Ventilação Pulmonar , Distribuição Aleatória
12.
J Neurophysiol ; 116(4): 1539-1541, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864755

RESUMO

Motor adaptations not only recalibrate movement execution but also can lead to altered movement perception in multiple sensory domains. Vazquez, Statton, Busgang, and Bastian (J Neurophysiol 114: 3255-3267, 2015) recently showed that split-belt walking affects perception of leg speed during walking, but not perceptions of leg position during standing and walking or perception of contact force during stepping. Considering their findings within the broader scope of sensorimotor recalibration in other tasks, we suggest that sensorimotor recalibrations are task specific and can be multisensory.


Assuntos
Adaptação Fisiológica , Caminhada , Transtornos Neurológicos da Marcha , Humanos , Percepção
13.
J Neurophysiol ; 113(3): 915-24, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25392164

RESUMO

Modulation of cutaneous reflexes is important in the neural control of walking, yet knowledge about underlying neural pathways is still incomplete. Recent studies have suggested that the cerebellum is involved. Here we evaluated the possible roles of the cerebellum in cutaneous reflex modulation and in attenuation of self-induced reflexes. First we checked whether leg muscle activity during walking was similar in patients with focal cerebellar lesions and in healthy control subjects. We then recorded cutaneous reflex activity in leg muscles during walking. Additionally, we compared reflexes after standard (computer triggered) stimuli with reflexes after self-induced stimuli for both groups. Biceps femoris and gastrocnemius medialis muscle activity was increased in the patient group compared with the control subjects, suggesting a coactivation strategy to reduce instability of gait. Cutaneous reflex modulation was similar between healthy control subjects and cerebellar patients, but the latter appeared less able to attenuate reflexes to self-induced stimuli. This suggests that the cerebellum is not primarily involved in cutaneous reflex modulation but that it could act in attenuation of self-induced reflex responses. The latter role in locomotion would be consistent with the common view that the cerebellum predicts sensory consequences of movement.


Assuntos
Neoplasias Cerebelares/fisiopatologia , Glioma/fisiopatologia , Síndrome do Hamartoma Múltiplo/fisiopatologia , Hemangioblastoma/fisiopatologia , Reflexo , Autoestimulação , Pele/inervação , Adulto , Estudos de Casos e Controles , Feminino , Marcha , Humanos , Masculino , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Caminhada
14.
J Neurophysiol ; 114(3): 1705-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26203114

RESUMO

Gait adaptation is essential for humans to walk according to the different demands of the environment. Although locomotor adaptation has been studied in different contexts and in various patient populations, the mechanisms behind locomotor adaptation are still not fully understood. The aim of the present study was to test two opposing hypotheses about the control of split-belt walking, one based on avoidance of limping and the other on avoiding limb excursion asymmetry. We assessed how well cerebellar patients with focal lesions and healthy control participants could sense differences between belt speeds during split-belt treadmill walking and correlated this to split-belt adaptation parameters. The ability to perceive differences between belt speeds was similar between the cerebellar patients and the healthy controls. After combining all participants, we observed a significant inverse correlation between stance time symmetry and limb excursion symmetry during the early phase of split-belt walking. Participants who were better able to perceive belt speed differences (e.g., they had a lower threshold and hence were able to detect a smaller speed difference) walked with the smallest asymmetry in stance time and the largest asymmetry in limb excursion. Our data support the hypothesis that humans aim to minimize (temporal) limping rather than (spatial) limb excursion asymmetry when using their perception of belt speed differences in the early phase of adaptation to split-belt walking.


Assuntos
Doenças Cerebelares/fisiopatologia , Cerebelo/fisiologia , Marcha , Percepção de Movimento , Caminhada , Adaptação Fisiológica , Adolescente , Adulto , Fenômenos Biomecânicos , Estudos de Casos e Controles , Cerebelo/fisiopatologia , Feminino , Humanos , Masculino
15.
J Neurophysiol ; 114(3): 1693-704, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26203113

RESUMO

To walk efficiently and stably on different surfaces under various constrained conditions, humans need to adapt their gait pattern substantially. Although the mechanisms behind locomotor adaptation are still not fully understood, the cerebellum is thought to play an important role. In this study we aimed to address the specific localization of cerebellar involvement in split-belt adaptation by comparing performance in patients with stable focal lesions after cerebellar tumor resection and in healthy controls. We observed that changes in symmetry of those parameters that were most closely related to interlimb coordination (such as step length and relative double stance time) were similar between healthy controls and cerebellar patients during and after split-belt walking. In contrast, relative stance times (proportions of stance in the gait cycle) were more asymmetric for the patient group than for the control group during the early phase of the post-split-belt condition. Patients who walked with more asymmetric relative stance times were more likely to demonstrate lesions in vermal lobules VI and Crus II. These results confirm that deficits in gait adaptation vary with ataxia severity and between patients with different types of cerebellar damage.


Assuntos
Adaptação Fisiológica , Doenças Cerebelares/fisiopatologia , Cerebelo/fisiologia , Caminhada , Adolescente , Adulto , Estudos de Casos e Controles , Cerebelo/fisiopatologia , Feminino , Marcha , Humanos , Masculino
16.
Hum Brain Mapp ; 36(12): 4897-909, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26441014

RESUMO

Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI.


Assuntos
Lesões Encefálicas/complicações , Tronco Encefálico/patologia , Cerebelo/patologia , Equilíbrio Postural/fisiologia , Transtornos de Sensação/etiologia , Transtornos de Sensação/patologia , Adolescente , Animais , Criança , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Índice de Gravidade de Doença , Baleias
17.
Exp Brain Res ; 233(12): 3349-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26259749

RESUMO

To prevent falls, adjustment of foot placement is a frequently used strategy to regulate and restore gait stability. While foot trajectory adjustments have been studied during discrete stepping, online corrections during walking are more common in daily life. Here, we studied quick foot placement adjustments during gait, using an instrumented treadmill equipped with a projector, which allowed us to project virtual stepping stones. This allowed us to shift some of the approaching stepping stones in a chosen direction at a given moment, such that participants were forced to adapt their step in that specific direction and had varying time available to do so. Thirteen healthy participants performed six experimental trials all consisting of 580 stepping stones, and 96 of those stones were shifted anterior, posterior or lateral at one out of four distances from the participant. Overall, long-step gait adjustments were performed more successfully than short-step and side-step gait adjustments. We showed that the ability to execute movement adjustments depends on the direction of the trajectory adjustment. Our findings suggest that choosing different leg movement adjustments for obstacle avoidance comes with different risks and that strategy choice does not depend exclusively on environmental constraints. The used obstacle avoidance strategy choice might be a trade-off between the environmental factors (i.e., the cost of a specific adjustment) and individuals' ability to execute a specific adjustment with success (i.e., the associated execution risk).


Assuntos
Marcha/fisiologia , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Pé/fisiologia , Humanos , Adulto Jovem
18.
Exp Brain Res ; 233(12): 3467-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26298043

RESUMO

Making step adjustments is an essential component of walking. However, the ability to make step adjustments may be compromised when the walker's attentional capacity is limited. This study compared the effects of aging and dual tasking on step adjustments in response to stepping-target perturbations during visually cued treadmill walking. Fifteen older adults (69.4 ± 5.0 years; mean ± SD) and fifteen young adults (25.4 ± 3.0 years) walked at a speed of 3 km/h on a treadmill. Both groups performed visually cued step adjustments in response to unpredictable shifts of projected stepping targets in forward (FW), backward (BW) or sideward (SW) directions, at different levels of task difficulty [which increased as the available response distance (ARD) decreased], and with and without dual tasking (auditory Stroop task). In both groups, step adjustments were smaller than required. For FW and BW shifts, older adults undershot more under dual-task conditions. For these shifts, ARD affected the age groups differentially. For SW shifts, larger errors were found for older adults, dual tasking and the most difficult ARD. Stroop task performance did not differ between groups in all conditions. Older adults have more difficulty than young adults to make corrective step adjustments while walking, especially under dual-tasking conditions. Furthermore, they seemed to prioritize the cognitive task over the step adjustment task, a strategy that may pose aging populations at a greater fall risk. For comparable task difficulty, the older adults performed considerably worse than the young adults, indicating a decreased ability to adjust steps under time pressure.


Assuntos
Envelhecimento/fisiologia , Função Executiva/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Caminhada/fisiologia , Adulto , Idoso , Percepção Auditiva/fisiologia , Sinais (Psicologia) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Teste de Stroop , Adulto Jovem
19.
Exerc Sport Sci Rev ; 42(1): 23-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24188982

RESUMO

Backward locomotion is used increasingly in sports and rehabilitation. However, it is unclear whether training effects of backward walking (BW)/backward running (BR) can be transferred simply to forward walking (FW)/forward running (FR). This touches on the question whether the same neural substrate can generate FW and BW. The available evidence suggests that BW uses the same rhythm circuitry but additionally requires specialized control circuits.


Assuntos
Exercício Físico , Marcha , Reabilitação , Humanos
20.
Eur J Appl Physiol ; 114(4): 743-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384984

RESUMO

PURPOSE: The most commonly used propulsion method for handcycling is moving the arms symmetrically. Previous studies indicated that during outdoor handcycling symmetrical arm movements are more efficient. During locomotor movements, however, arm movements are performed asymmetrically in combination with leg movements. We questioned which combination of arm and leg movements is more efficient during combined arm and leg cycling for stationary use. METHODS: Twenty-five able-bodied adults performed eight submaximal tests of 6 min on a hybrid handcycle at three incremental gears during four different conditions ('arms only' and 'arms & legs' with arms symmetrical and asymmetrical). Oxygen uptake (VO2), heart rate (HR) and Borg score (Borg) were assessed. RESULTS: Increasing workload resulted in significant increases in VO2 (16 W: 13.0 ± 2.4 ml kg(-1) min(-1), 31 W: 14.5 ± 2.9, 49 W: 15.5 ± 2.8; p < 0.001) and Borg (16 W: 7.7 ± 1.7 points, 31 W: 8.6 ± 1.9, 49 W: 9.5 ± 1.9; p < 0.001). During 'arms only', no differences were found in exercise intensity between symmetrical and asymmetrical movements. Contrarily, during 'arms & legs', both VO2 (p < 0.001) and Borg (p = 0.001) were significantly lower for the asymmetrical (VO2: 13.8 ± 2.6 ml kg(-1) min(-1), Borg: 8.1 ± 1.6 points) compared to the symmetrical condition (VO2: 14.9 ± 2.8, Borg: 9.1 ± 2.0). CONCLUSIONS: Results indicated that asymmetrical arm movements, especially in combination with leg movements, represented the most efficient condition on a stationary hybrid handcycle. The current results suggest that neural energy costs are lower when moving in the preferred (asymmetrical) coordination when no steering is required. These findings may have implications for stationary arm & leg cycling rehabilitation and tricycle adaptations in patients with spinal cord injury.


Assuntos
Braço/fisiologia , Terapia por Exercício/métodos , Perna (Membro)/fisiologia , Movimento , Adulto , Ciclismo , Feminino , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA