Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Neurosci ; 23(1): 58, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217122

RESUMO

BACKGROUND: Opioids are among the most effective and commonly prescribed analgesics for the treatment of acute pain after spinal cord injury (SCI). However, morphine administration in the early phase of SCI undermines locomotor recovery, increases cell death, and decreases overall health in a rodent contusion model. Based on our previous studies we hypothesize that morphine acts on classic opioid receptors to alter the immune response. Indeed, we found that a single dose of intrathecal morphine increases the expression of activated microglia and macrophages at the injury site. Whether similar effects of morphine would be seen with repeated intravenous administration, more closely simulating clinical treatment, is not known. METHODS: To address this, we used flow cytometry to examine changes in the temporal expression of microglia and macrophages after SCI and intravenous morphine. Next, we explored whether morphine changed the function of these cells through the engagement of cell-signaling pathways linked to neurotoxicity using Western blot analysis. RESULTS: Our flow cytometry studies showed that 3 consecutive days of morphine administration after an SCI significantly increased the number of microglia and macrophages around the lesion. Using Western blot analysis, we also found that repeated administration of morphine increases ß-arrestin, ERK-1 and dynorphin (an endogenous kappa opioid receptor agonist) production by microglia and macrophages. CONCLUSIONS: These results suggest that morphine administered immediately after an SCI changes the innate immune response by increasing the number of immune cells and altering neuropeptide synthesis by these cells.


Assuntos
Morfina , Traumatismos da Medula Espinal , Analgésicos/farmacologia , Analgésicos Opioides/farmacologia , Animais , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Dinorfinas/uso terapêutico , Macrófagos , Microglia/patologia , Morfina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/uso terapêutico , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia , beta-Arrestinas/uso terapêutico
2.
J Neurochem ; 157(3): 710-726, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33354763

RESUMO

Apoptotic endoplasmic reticulum (ER) stress is a major mechanism for dopaminergic (DA) loss in Parkinson's disease (PD). We assessed if low doses of the partial α4ß2 nicotinic acetylcholine receptor agonist, cytisine attenuates apoptotic ER stress and exerts neuroprotection in substantia nigra pars compacta (SNc) DA neurons. Alternate day intraperitoneal injections of 0.2 mg/kg cytisine were administered to female and male mice with 6-hydroxydopamine (6-OHDA) lesions in the dorsolateral striatum, which caused unilateral degeneration of SNc DA neurons. Cytisine attenuated 6-OHDA-induced PD-related behaviors in female, but not in male mice. We also found significant reductions in tyrosine hydroxylase (TH) loss within the lesioned SNc of female, but not male mice. In contrast to female mice, DA neurons within the lesioned SNc of male mice showed a cytisine-induced pathological increase in the nuclear translocation of the pro-apoptotic ER stress protein, C/EBP homologous protein (CHOP). To assess the role of estrogen in cytisine neuroprotection in female mice, we exposed primary mouse DA cultures to either 10 nM 17-ß-estradiol and 200 nM cytisine or 10 nM 17-ß-estradiol alone. 17-ß-estradiol reduced expression of CHOP, whereas cytisine exposure reduced 6-OHDA-mediated nuclear translocation of two other ER stress proteins, activating transcription factor 6 and x-box-binding protein 1, but not CHOP. Taken together, these data show that cytisine and 17-ß-estradiol work in combination to inhibit all three arms (activating transcription factor 6, x-box-binding protein 1, and CHOP) of apoptotic ER stress signaling in DA neurons, which can explain the neuroprotective effect of low-dose cytisine in female mice.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estradiol/farmacologia , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Fator 6 Ativador da Transcrição/efeitos dos fármacos , Animais , Azocinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/psicologia , Cultura Primária de Células , Quinolizinas/farmacologia , Caracteres Sexuais , Substância Negra/efeitos dos fármacos , Simpatolíticos , Fator de Transcrição CHOP/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Spinal Cord ; 58(10): 1080-1089, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32461572

RESUMO

STUDY DESIGN: Retrospective chart review. OBJECTIVES: The objective of this study was to characterize opioid administration in people with acute SCI and examine the association between opioid dose and (1) changes in motor/functional scores from hospital to rehabilitation discharge, and (2) pain, depression, and quality of life (QOL) scores 1-year post injury. SETTING: Spinal Cord Injury Model System (SCIMS) inpatient acute rehabilitation facility. METHODS: Patients included in the SCIMS from 2008 to 2011 were linked to the National Trauma Registry and the electronic medical record. Three opioid dose groups (low, medium, and high) were defined based on the total morphine equivalence in milligrams at 24 h. The associations between opioid dose groups and functional/motor outcomes were assessed, as well as 1-year follow-up pain and QOL surveys. RESULTS: In all, 85/180 patients had complete medication records. By 24 h, all patients had received opioids. Patients receiving higher amounts of opioids had higher pain scores 1 year later compared with medium- and low-dose groups (pain levels 5.5 vs. 4 vs. 1, respectively, p = 0.018). There was also an 8× greater risk of depression 1 year later in the high-dose group compared with the low-dose group (OR: 8.1, 95% CI: 1.2-53.7). In analyses of motor scores, we did not find a significant interaction between opioid dose and duration of injury. CONCLUSIONS: These preliminary findings suggest that higher doses of opioids administered within 24 h of injury are associated with increased pain in the chronic phase of people with SCI.


Assuntos
Analgésicos Opioides/administração & dosagem , Medição da Dor/efeitos dos fármacos , Dor/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Adulto , Analgésicos Opioides/efeitos adversos , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/diagnóstico , Dor/psicologia , Medição da Dor/métodos , Qualidade de Vida/psicologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/psicologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
4.
Brain Behav Immun ; 79: 125-138, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30684649

RESUMO

Opioids are among the most effective and widely prescribed medications for the treatment of pain following spinal cord injury (SCI). Spinally-injured patients receive opioids within hours of arrival at the emergency room, and prolonged opioid regimens are often employed for the management of post-SCI chronic pain. However, previous studies in our laboratory suggest that the effects of opioids such as morphine may be altered in the pathophysiological context of neurotrauma. Specifically, we have shown that morphine administration in a rodent model of SCI increases mortality and tissue loss at the injury site, and decreases recovery of motor and sensory function, and overall health, even weeks after treatment. The literature suggests that opioids may produce these adverse effects by acting as endotoxins and increasing glial activation and inflammation. To better understand the effects of morphine following SCI, in this study we used flow cytometry to assess immune-competent cells at the lesion site. We observed a morphine-induced increase in the overall number of CD11b+ cells, with marked effects on microglia, in SCI subjects. Next, to investigate whether this increase in the inflammatory profile is necessary to produce morphine's effects, we challenged morphine treatment with minocycline. We found that pre-treatment with minocycline reduced the morphine-induced increase in microglia at the lesion site. More importantly, minocycline also blocked the adverse effects of morphine on recovery of function without disrupting the analgesic efficacy of this opioid. Together, our findings suggest that following SCI, morphine may exacerbate the inflammatory response, increasing cell death at the lesion site and negatively affecting functional recovery.


Assuntos
Minociclina/metabolismo , Minociclina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Animais , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Microglia/metabolismo , Morfina/efeitos adversos , Morfina/metabolismo , Morfina/farmacologia , Dor/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
5.
Brain Behav Immun ; 51: 176-195, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26296565

RESUMO

Spinal cord injury (SCI) leads to increased anxiety and depression in as many as 60% of patients. Yet, despite extensive clinical research focused on understanding the variables influencing psychological well-being following SCI, risk factors that decrease it remain unclear. We hypothesized that excitation of the immune system, inherent to SCI, may contribute to the decrease in psychological well-being. To test this hypothesis, we used a battery of established behavioral tests to assess depression and anxiety in spinally contused rats. The behavioral tests, and subsequent statistical analyses, revealed three cohorts of subjects that displayed behavioral characteristics of (1) depression, (2) depression and anxiety, or (3) no signs of decreased psychological well-being. Subsequent molecular analyses demonstrated that the psychological cohorts differed not only in behavioral symptoms, but also in peripheral (serum) and central (hippocampi and spinal cord) levels of pro-inflammatory cytokines. Subjects exhibiting a purely depression-like profile showed higher levels of pro-inflammatory cytokines peripherally, whereas subjects exhibiting a depression- and anxiety-like profile showed higher levels of pro-inflammatory cytokines centrally (hippocampi and spinal cord). These changes in inflammation were not associated with injury severity; suggesting that the association between inflammation and the expression of behaviors characteristic of decreased psychological well-being was not confounded by differential impairments in motor ability. These data support the hypothesis that inflammatory changes are associated with decreased psychological well-being following SCI.


Assuntos
Ansiedade/imunologia , Depressão/imunologia , Encefalite/metabolismo , Inflamação/metabolismo , Traumatismos da Medula Espinal/imunologia , Animais , Ansiedade/etiologia , Citocinas/sangue , Citocinas/metabolismo , Depressão/etiologia , Modelos Animais de Doenças , Encefalite/etiologia , Hipocampo/metabolismo , Inflamação/etiologia , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Locomoção , Masculino , Tamanho do Órgão , Dor/etiologia , Dor/imunologia , Limiar da Dor , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Timo/patologia , alfa-Macroglobulinas/metabolismo
6.
Bone Rep ; 21: 101761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646090

RESUMO

Spinal cord injury (SCI) leads to significant sublesional bone loss and high fracture rates. While loss of mechanical loading plays a significant role in SCI-induced bone loss, animal studies have demonstrated mechanical loading alone does not fully account for loss of bone following SCI. Indeed, we have shown that bone loss occurs below the level of an incomplete moderate contusion SCI, despite the resumption of weight-bearing and stepping. As systemic factors could also impact bone after SCI, bone alterations may also be present in bone sites above the level of injury. To examine this, we assessed bone microarchitecture and bone turnover in the supralesional humerus in male and female rats at two different ages following a moderate contusion injury in both sub-chronic (30 days) and chronic (180 days) time points after injury. At the 30-day timepoint, we found that both young and adult male SCI rats had decrements in trabecular bone volume at the supralesional proximal humerus (PH), while female SCI rats were not different from age-matched shams. At the 180-day timepoint, there were no statistical differences between SCI and sham groups, irrespective of age or sex, at the supralesional proximal humerus. At the 30-day timepoint, all SCI rats had lower BFR and higher osteoclast-covered trabecular surfaces in the proximal humerus compared to age-matched sham groups generally matching the pattern of SCI-induced changes in bone turnover seen in the sublesional proximal tibia. However, at the 180-day timepoint, only male SCI rats had lower BFR at the supralesional proximal humerus while female SCI rats had higher or no different BFR than their age-matched counterparts. Overall, this preclinical study demonstrates that a moderate contusion SCI leads to alterations in bone turnover above the level of injury within 30-days of injury; however male SCI rats maintained lower BFR in the supralesional humerus into long-term recovery. These data further highlight that bone loss after SCI is not driven solely by disuse. Additionally, these data allude to potential systemic factors exerting influence on bone following SCI and highlight the need to consider treatments for SCI-induced bone loss that impact both sublesional and systemic factors.

7.
Methods Mol Biol ; 2616: 263-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715941

RESUMO

Rodent models of stroke and neural injury are reliable and useful tools for testing new interventions and therapeutics. In addition to physical (motor) impairment, cognitive deficits and depressive behaviors are often observed due to neurotrauma. Proper experimental design of pre- and post-assessments of these behaviors that reduce or minimize the confounding effects of motor impairment are essential for determining markers of progression of impairment or recovery. This chapter provides step-by-step laboratory protocols for assessing cognition using the Barnes maze and the novel object recognition test (NORT) and depressive-like behaviors using the sucrose preference test, the three-chambered sociability approach test, and the burrowing test.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Acidente Vascular Cerebral , Animais , Depressão/diagnóstico , Depressão/etiologia , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Acidente Vascular Cerebral/complicações , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças
8.
J Neurotrauma ; 40(9-10): 901-917, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36226413

RESUMO

Spinal cord injury (SCI) results in significant loss of sublesional bone, adding to the comorbidity of SCI with an increased risk of fracture and post-fracture complications. Unfortunately, the effect of SCI on skeletal health is also likely to rise, as the average age of SCI has increased and there are well-known negative effects of age on bone. To date, however, the impact of age and age-associated inflammation (inflammaging) on skeletal health after SCI remains largely unknown. To address this, we compared bone parameters in young (3 month) and middle-aged (9 month) male and female rats with a moderate thoracic contusion injury, to age- and sex-matched sham-operated controls. Skeletal parameters, locomotor function, and serum cytokine levels were assessed at both subchronic (30 days) and chronic (180 days) time points post-injury. We hypothesized that SCI would lead to a dramatic loss of bone immediately after injury in all SCI groups, with inflammaging leading to greater loss in middle-aged SCI rats. We also predicted that whereas younger rats might re-establish bone properties in more chronic phases of SCI, middle-aged rats would not. Supporting these hypothesis, trabecular bone volume was significantly lower in male and young female SCI rats early after injury. Contrary to our hypothesis, however, there was greater loss of trabecular bone volume, relative to age-matched shams, in young compared with middle-aged SCI rats, with no effects of SCI on trabecular bone volume in middle-aged female rats. Moreover, despite recovery of weight-supported locomotor activity, bone loss persisted into the chronic phase of injury for the young rats. Bone formation rates were lower in young male SCI rats, regardless of the time since injury, whereas both young and middle-aged female SCI rats had lower bone formation in the subchronic but not the chronic phase of SCI. In middle-aged rats, SCI-induced higher osteoclast surfaces, which also persisted into the chronic phase of SCI in middle-aged females. Neither age nor SCI-induced increases in inflammation seemed to be associated with bone loss. In fact, SCI had more dramatic and persistent effects on bone in male rats, whereas aging and SCI elevated serum cytokines only in female rats. Overall, this study demonstrates SCI-induced loss of bone and altered bone turnover in male and female rats that persists into the chronic phase post-injury. The sex- and age-dependent variations in bone turnover and serum cytokines, however, underscore the need to further explore both mechanisms and potential therapeutics in multiple demographics.


Assuntos
Osso e Ossos , Traumatismos da Medula Espinal , Ratos , Masculino , Feminino , Animais , Remodelação Óssea , Traumatismos da Medula Espinal/complicações , Citocinas , Inflamação/etiologia , Medula Espinal
9.
Exp Neurol ; 359: 114255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279935

RESUMO

Opioids are among the most effective analgesics for the management of pain in the acute phase of a spinal cord injury (SCI), and approximately 80% of patients are treated with morphine in the first 24 h following SCI. We have found that morphine treatment in the first 7 days after SCI increases symptoms of pain at 42 days post-injury and undermines the recovery of locomotor function in a rodent model. Prior research has implicated microglia/macrophages in opioid-induced hyperalgesia and the development of neuropathic pain. We hypothesized that glial activation may also underlie the development of morphine-induced pain and cell death after SCI. Supporting this hypothesis, our previous studies found that intrathecal and intravenous morphine increase the number of activated microglia and macrophages present at the spinal lesion site, and that the adverse effects of intrathecal morphine can be blocked with intrathecal minocycline. Recognizing that the cellular expression of opioid receptors, and the intracellular signaling pathways engaged, can change with repeated administration of opioids, the current study tested whether minocycline was also protective with repeated intravenous morphine administration, more closely simulating clinical treatment. Using a rat model of SCI, we co-administered intravenous morphine and intrathecal minocycline for the first 7 days post injury and monitored sensory and locomotor recovery. Contrary to our hypothesis and previous findings with intrathecal morphine, we found that minocycline did not prevent the negative effects of morphine. Surprisingly, we also found that intrathecal minocycline alone is detrimental for locomotor recovery after SCI. Using ex vivo cell cultures, we investigated how minocycline and morphine altered microglia/macrophage function. Commensurate with published studies, we found that minocycline blocked the effects of morphine on the release of pro-inflammatory cytokines but, like morphine, it increased glial phagocytosis. While phagocytosis is critical for the removal of cellular and extracellular debris at the spinal injury site, increased phagocytosis after injury has been linked to the clearance of stressed but viable neurons and protracted inflammation. In sum, our data suggest that both morphine and minocycline alter the acute immune response, and reduce locomotor recovery after SCI.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Ratos , Animais , Morfina , Minociclina/uso terapêutico , Recuperação de Função Fisiológica , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Analgésicos Opioides , Neuralgia/metabolismo , Medula Espinal/patologia
10.
J Neurotrauma ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37905504

RESUMO

Identifying novel therapeutic approaches to promote recovery of neurological functions following spinal cord injury (SCI) remains a great unmet need. Nociceptive signaling in the acute phase of SCI has been shown to inhibit recovery of locomotor function and promote the development of chronic neuropathic pain. We therefore hypothesized that inhibition of nociceptive signaling in the acute phase of SCI might improve long-term functional outcomes in the chronic phase of injury. To test this hypothesis, we took advantage of a selective strategy utilizing AAV6 to deliver inhibitory (hM4Di) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to nociceptors of the L4-L6 dorsal root ganglia to evaluate the effects of transient nociceptor silencing on long-term sensory and motor functional outcomes in a rat thoracic contusion SCI model. Following hM4Di-mediated nociceptor inhibition from 0-14 days post-SCI, we conducted behavioral assessments until 70 days post-SCI, then performed histological assessments of lesion severity and axon plasticity. Our results show highly selective expression of hM4Di within small diameter nociceptors including calcitonin gene-related peptide (CGRP)+ and IB4-binding neurons. Expression of hM4Di in less than 25% of nociceptors was sufficient to increase hindlimb thermal withdrawal latency in naïve rats. Compared with subjects who received AAV-yellow fluorescent protein (YFP; control), subjects who received AAV-hM4Di exhibited attenuated thermal hyperalgesia, greater coordination, and improved hindlimb locomotor function. However, treatment did not impact the development of cold allodynia or mechanical hyperalgesia. Histological assessments of spinal cord tissue suggested trends toward reduced lesion volume, increased neuronal sparing and increased CGRP+ axon sprouting in hM4Di-treated animals. Together, these findings suggest that nociceptor silencing early after SCI may promote beneficial plasticity in the acute phase of injury that can impact long-term functional outcomes, and support previous work highlighting primary nociceptors as possible therapeutic targets for pain management after SCI.

11.
Cell Rep ; 42(2): 112089, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36796365

RESUMO

Withdrawal from chronic opioid use often causes hypodopaminergic states and negative affect, which may drive relapse. Direct-pathway medium spiny neurons (dMSNs) in the striatal patch compartment contain µ-opioid receptors (MORs). It remains unclear how chronic opioid exposure and withdrawal impact these MOR-expressing dMSNs and their outputs. Here, we report that MOR activation acutely suppressed GABAergic striatopallidal transmission in habenula-projecting globus pallidus neurons. Notably, withdrawal from repeated morphine or fentanyl administration potentiated this GABAergic transmission. Furthermore, intravenous fentanyl self-administration enhanced GABAergic striatonigral transmission and reduced midbrain dopaminergic activity. Fentanyl-activated striatal neurons mediated contextual memory retrieval required for conditioned place preference tests. Importantly, chemogenetic inhibition of striatal MOR+ neurons rescued fentanyl withdrawal-induced physical symptoms and anxiety-like behaviors. These data suggest that chronic opioid use triggers GABAergic striatopallidal and striatonigral plasticity to induce a hypodopaminergic state, which may promote negative emotions and relapse.


Assuntos
Analgésicos Opioides , Corpo Estriado , Corpo Estriado/metabolismo , Fentanila , Receptores Opioides , Afeto , Receptores Opioides mu/metabolismo
12.
J Neurotrauma ; 39(23-24): 1741-1755, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35996351

RESUMO

Immediately following spinal cord injury (SCI) patients experience pain associated with injury to the spinal cord and nerves as well as with accompanying peripheral injuries. This pain is usually treated with opioids, and most commonly with morphine. However, in a rodent model we have shown that, irrespective of the route of administration, morphine administered in the acute phase of SCI undermines long-term locomotor recovery. Our previous data suggest that activation of kappa opioid receptors (KORs) mediates these negative effects. Blocking KORs with norbinaltorphimine (norBNI), prior to a single dose of epidural morphine, prevented the morphine-induced attenuation of locomotor recovery. Because numerous cellular changes occur with chronic opioid administration compared with a single dose, the current study tested whether norBNI was also effective in a more clinically relevant paradigm of repeated, intravenous morphine administration after SCI. We hypothesized that blocking KOR activation during repeated, intravenous morphine administration would also protect recovery. Supporting this hypothesis, we found that blocking KOR activation in young, male rats prevented the negative effects of morphine on locomotor recovery, although neither norBNI nor morphine had an effect on long-term pain at the doses used. We also found that norBNI treatment blocked the adverse effects of morphine on lesion size. These data suggest that a KOR antagonist given in conjunction with morphine may provide a clinical strategy for effective analgesia without compromising locomotor recovery after SCI.


Assuntos
Morfina , Antagonistas de Entorpecentes , Receptores Opioides kappa , Traumatismos da Medula Espinal , Animais , Masculino , Ratos , Analgésicos Opioides/efeitos adversos , Morfina/efeitos adversos , Antagonistas de Entorpecentes/farmacologia , Dor , Ratos Sprague-Dawley , Receptores Opioides kappa/antagonistas & inibidores , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/induzido quimicamente
13.
Ther Adv Neurol Disord ; 15: 17562864211070657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198042

RESUMO

INTRODUCTION: Spasticity is a common consequence of spinal cord injury (SCI), estimated to affect up to 93% of people living with SCI in the community. Problematic spasticity affects around 35% people with SCI spasticity. The early period after injury is believed to be the most opportune time for neural plasticity after SCI. We hypothesize that clinical interventions in the early period could reduce the incidence of spasticity. To address this, we evaluated the spasticity outcomes of clinical trials with interventions early after SCI. METHODS: We performed a systematic review of the literature between January 2000 and May 2021 to identify control trials, in humans and animals, that were performed early after SCI that included measures of spasticity in accordance with PRISMA guidelines. RESULTS: Our search yielded 1,463 records of which we reviewed 852 abstracts and included 8 human trial peer-reviewed publications and 9 animal studies. The 9 animal trials largely supported the hypothesis that early intervention can reduce spasticity, including evidence from electrophysiological, behavioral, and histologic measures. Of the 8 human trials, only one study measured spasticity as a primary outcome with a sample size sufficient to test the hypothesis. In this study, neuromodulation of the spinal cord using electric stimulation of the common peroneal nerve reduced spasticity in the lower extremities compared to controls. CONCLUSION: Given the prevalence of problematic spasticity, there is surprisingly little research being performed in the early period of SCI that includes spasticity measures, and even fewer studies that directly address spasticity. More research on the potential for early interventions to mitigate spasticity is needed.

14.
Biology (Basel) ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35205056

RESUMO

After spinal cord injury (SCI), 80% of individuals are diagnosed with osteopenia or osteoporosis. The dramatic loss of bone after SCI increases the potential for fractures 100-fold, with post-fracture complications occurring in 54% of cases. With the age of new SCI injuries increasing, we hypothesized that a SCI-induced reduction in weight bearing could further exacerbate age-induced bone loss. To test this, young (2-3 months) and old (20-30 months) male and female mice were given a moderate spinal contusion injury (T9-T10), and recovery was assessed for 28 days (BMS, rearing counts, distance traveled). Tibial trabecular bone volume was measured after 28 days with ex vivo microCT. While BMS scores did not differ across groups, older subjects travelled less in the open field and there was a decrease in rearing with age and SCI. As expected, aging decreased trabecular bone volume and cortical thickness in both old male and female mice. SCI alone also reduced trabecular bone volume in young mice, but did not have an additional effect beyond the age-dependent decrease in trabecular and cortical bone volume seen in both sexes. Interestingly, both rearing and total activity correlated with decreased bone volume. These data underscore the importance of load and use on bone mass. While partial weight-bearing does not stabilize/reverse bone loss in humans, our data suggest that therapies that simulate complete loading may be effective after SCI.

15.
Brain Behav Immun ; 25(2): 349-59, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20974246

RESUMO

Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1ß 24 h later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1ß at both 30 min and 24 h after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function.


Assuntos
Analgésicos Opioides/antagonistas & inibidores , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Locomoção/efeitos dos fármacos , Morfina/antagonistas & inibidores , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Analgésicos Opioides/farmacologia , Animais , Autofagia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Injeções Espinhais , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Morfina/farmacologia , Espasticidade Muscular/prevenção & controle , Medição da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Ratos Sprague-Dawley , Sensação/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia
16.
IEEE Trans Biomed Eng ; 68(9): 2798-2809, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497323

RESUMO

Ankle plantarflexion plays an important role in forward propulsion and anterior-posterior balance during locomotion. This component of gait is often critically impacted by neurotraumas and neurological diseases. We hypothesized that augmenting plantar cutaneous feedback, via closed-loop distal-tibial nerve stimulation, could increase ankle plantarflexion during walking. To test the hypothesis, one intact rat walked on a motorized treadmill with implanted electronic device and electrodes for closed-loop neural recording and stimulation. Constant-current biphasic electrical pulse train was applied to distal-tibial nerve, based on electromyogram recorded from the medial gastrocnemius muscle, to be timed with the stance phase. The stimulation current threshold to evoke plantar cutaneous feedback was set at 30 µA (1·T), based on compound action potential evoked by stimulation. The maximum ankle joint angle at plantarflexion, during the application of stimulation currents of 3.3·T and 6.6·T, respectively, was increased from 149.4° (baseline) to 165.4° and 161.6°. The minimum ankle joint angle at dorsiflexion was decreased from 59.4° (baseline) to 53.1°, during the application of stimulation currents of 3.3·T, but not changed by 6.6·T. Plantar cutaneous augmentation also changed other gait kinematic parameters. Stance duty factor was increased from 51.9% (baseline) to 65.7% and 64.0%, respectively, by 3.3·T and 6.6·T, primarily due to a decrease in swing duration. Cycle duration was consistently decreased by the stimulation. In the control trial after two stimulation trials, a strong after-effect was detected in overall gait kinematics as well as ankle plantarflexion, suggesting that this stimulation has the potential for producing long-term changes in gait kinematics.


Assuntos
Articulação do Tornozelo , Tornozelo , Animais , Fenômenos Biomecânicos , Marcha , Músculo Esquelético , Ratos , Caminhada
17.
IEEE Trans Biomed Circuits Syst ; 15(2): 326-338, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861705

RESUMO

Plantar cutaneous feedback plays an important role in stable and efficient gait, by modulating the activity of ankle dorsi- and plantar-flexor muscles. However, central and peripheral nervous system trauma often decrease plantar cutaneous feedback and/or interneuronal excitability in processing the plantar cutaneous feedback. In this study, we tested a fully implantable neural recording and stimulation system augmenting plantar cutaneous feedback. Electromyograms were recorded from the medial gastrocnemius muscle for stance phase detection, while biphasic stimulation pulses were applied to the distal-tibial nerve during the stance phase to augment plantar cutaneous feedback. A Bluetooth low energy and a Qi-standard inductive link were adopted for wireless communication and wireless charging, respectively. To test the operation of the system, one intact rat walked on a treadmill with the electrical system implanted into its back. Leg kinematics were recorded to identify the stance phase. Stimulation was applied, with a 250-ms onset delay from stance onset and 200-ms duration, resulting in the onset at 47.58 ± 2.82% of stance phase and the offset at 83.49 ± 4.26% of stance phase (Mean ± SEM). The conduction velocity of the compound action potential (31.2 m/s and 41.6 m/s at 1·T and 2·T, respectively) suggests that the evoked action potential was characteristic of an afferent volley for cutaneous feedback. We also demonstrated successful wireless charging and system reset functions. The experimental results suggest that the presented implantable system can be a valuable neural interface tool to investigate the effect of plantar cutaneous augmentation on gait in a rat model.


Assuntos
Marcha , Caminhada , Animais , Articulação do Tornozelo , Estimulação Elétrica , Eletromiografia , Músculo Esquelético , Ratos
18.
Brain Behav Immun Health ; 14: 100258, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34589764

RESUMO

Following spinal cord injury, 18-26% of patients are diagnosed with depressive disorders, compared to 8-12% in the general population. As increased inflammation strongly correlates with depression in both animal and human studies, we hypothesized that the immune activation inherent to SCI could increase depression-like behavior. Thus, we proposed that reducing immune activation with minocycline, a microglial inhibitor, would decrease depression-like behavior following injury. Male Sprague-Dawley rats were given minocycline in their drinking water for 14 days following a moderate, mid-thoracic (T12) spinal contusion. An array of depression-like behaviors (social activity, sucrose preference, forced swim, open field activity) were examined prior to injury as well as on days 9-10, 19-20, and 29-30 post-injury. Peripheral cytokine levels were analyzed in serum collected prior to injury and 10 days post-injury. Hierarchical cluster analysis divided subjects into two groups based on behavior: depressed and not-depressed. Depressed subjects displayed lower levels of open field activity and social interaction relative to their not-depressed counterparts. Depressed subjects also showed significantly greater expression of pro-inflammatory cytokines both before and after injury and displayed lower levels of hippocampal neurogenesis than not-depressed subjects. Intriguingly, subjects who later showed depressive behaviors had higher baseline levels of the pro-inflammatory cytokine IL-6, which persisted throughout the duration of the experiment. Minocycline, however, did not affect serum cytokine levels and did not block the development of depression; equal numbers of minocycline versus vehicle-treated subjects appeared in both phenotypic groups. Despite this, these data overall suggest that molecular correlates of inflammation prior to injury could predict the development of depression after a physical stressor.

19.
Front Neurol ; 11: 650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733366

RESUMO

Spinal cord injury research in experimental animals aims to define mechanisms of tissue damage and identify interventions that can be translated into effective clinical therapies. Highly reliable models of injury and outcome measurement are essential to achieve these aims and avoid problems with reproducibility. Functional scoring is a critical component of outcome assessment and is currently commonly focused on open field locomotion (the "BBB score"). Here we analyze variability of observed locomotor outcome after a highly regulated spinal cord contusion in a large group of rats that had not received any therapeutic intervention. Our data indicate that, despite tight regulation of the injury severity, there is considerable variability in open-field score of individual rats at 21 days after injury, when the group as a whole reaches a functional plateau. The bootstrapped reference interval (that defines boundaries that contain 95% scores in the population without regard for data distributional character) for the score at 21 days was calculated to range from 2.3 to 15.9 on the 22-point scale. Further analysis indicated that the mean day 21 score of random groups of 10 individuals drawn by bootstrap sampling from the whole study population varies between 9.5 and 13.5. Wide variability between individuals implies that detection of small magnitude group-level treatment effects will likely be unreliable, especially if using small experimental group sizes. To minimize this problem in intervention studies, consideration should be given to assessing treatment effects by comparing proportions of animals in comparator groups that attain pre-specified criterion scores.

20.
J Neurosci ; 28(46): 11939-49, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19005059

RESUMO

Neurons within the spinal cord can support several forms of plasticity, including response-outcome (instrumental) learning. After a complete spinal transection, experimental subjects are capable of learning to hold the hindlimb in a flexed position (response) if shock (outcome) is delivered to the tibialis anterior muscle when the limb is extended. This response-contingent shock produces a robust learning that is mediated by ionotropic glutamate receptors (iGluRs). Exposure to nociceptive stimuli that are independent of limb position (e.g., uncontrollable shock; peripheral inflammation) produces a long-term (>24 h) inhibition of spinal learning. This inhibition of plasticity in spinal learning is itself a form of plasticity that requires iGluR activation and protein synthesis. Plasticity of plasticity (metaplasticity) in the CNS has been linked to group I metabotropic glutamate receptors (subtypes mGluR1 and mGluR5) and activation of protein kinase C (PKC). The present study explores the role of mGluRs and PKC in the metaplastic inhibition of spinal cord learning using a combination of behavioral, pharmacological, and biochemical techniques. Activation of group I mGluRs was found to be both necessary and sufficient for metaplastic inhibition of spinal learning. PKC was activated by stimuli that inhibit spinal learning, and inhibiting PKC activity restored the capacity for spinal learning. Finally, a PKC inhibitor blocked the metaplastic inhibition of spinal learning produced by a group I mGluR agonist. The data strongly suggest that group I mGluRs control metaplasticity of spinal learning through a PKC-dependent mechanism, providing a potential therapeutic target for promoting use-dependent plasticity after spinal cord injury.


Assuntos
Ácido Glutâmico/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Proteína Quinase C/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Medula Espinal/enzimologia , Animais , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Medula Espinal/fisiopatologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA