Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Am Chem Soc ; 146(7): 4500-4507, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330246

RESUMO

Preparation of a redox-frustrated high-energy-density energetic material is achieved by gentle protolysis of Mn[N(SiMe3)2]2 with the perchlorate salt of the tetrazolamide [H2NtBuMeTz]ClO4 (Tz = tetrazole), yielding the Mn6N6 hexagonal prismatic cluster, Mn6(µ3-NTztBuMe)6(ClO4)6. Quantum mechanics-based molecular dynamics simulations of the decomposition of this molecule predict that magnetic ordering of the d5 Mn2+ ions influences the pathway and rates of decomposition, suggesting that the initiation of decomposition of the bulk material might be significantly retarded by an applied magnetic field. We report here experimental tests of the prediction showing that the presence of a 0.5 T magnetic field modulates the ignition onset temperature by +10.4 ± 3.9 °C (from 414 ± 4 °C), demonstrating the first example of a magnetically modulated explosive.

2.
Inorg Chem ; 62(24): 9285-9290, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267586

RESUMO

The energetic content of the compounds MgTp2, FeTp2, MnTp2, and TiTp2 is measured by bomb calorimetry and compared to theoretical calculations (Tp = trispyrazoylborate). TiTp2 had the largest heat of combustion of the four compounds. Comparison of the heat of combustion of the Ti complex to those of Mg and Mn complexes suggests an effective combustion energy of TiII of between 1400 and 3000 kJ/mol, affirming the role of TiII as a strong fuel atom.

3.
Inorg Chem ; 60(21): 16103-16110, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34632759

RESUMO

The metal-organic framework Zr6O4(OH)4(bpydc)6 (bpydc2- = 2,2'-bipyridine-5,5'-dicarboxylate) is used to template the growth of a cluster fragment of the two-dimensional solid MnBr2, which was predicted to exhibit spin frustration. Single-crystal and powder X-ray diffraction analyses reveal a cluster with 19 metal ions arranged in a triangular lattice motif. Static magnetic susceptibility measurements indicate antiferromagnetic coupling between the high-spin (S = 5/2) MnII centers, and dynamic magnetic susceptibility data suggest population of low-lying excited states, consistent with magnetic frustration. Density functional theory calculations are used to determine the energies for a subset of thousands of magnetic configurations available to the cluster. The Yamaguchi generalized spin-projection method is then employed to construct a model for magnetic coupling interactions within the cluster, enabling facile determination of the energy for all possible magnetic configurations. The confined cluster is predicted to possess a doubly degenerate, highly geometrically frustrated ground state with a total spin of STotal = 5/2.

4.
J Am Chem Soc ; 141(14): 5699-5709, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30856327

RESUMO

Reaction of 1,3-diazidopropane with an electron-rich Mn(II) precursor results in oxidation of the metal center to a Mn complex with concomitant assembly of the macrocyclic ligand into the 1,2,3,4,8,9,10,11-octaazacyclotetradeca-2,9-diene-1,4,8,11-tetraido (OIM) ligand. Although describable as a Werner Mn(V) complex, analysis by X-ray diffraction, magnetic measurements, X-ray photoelectron spectroscopy, cyclic voltammetry, and density functional theory calculations suggest an electronic structure consisting of a Mn(III) metal center with a noninnocent OIM diradical ligand. The resulting complex, (OIM)Mn(NH tBu), reacts via proton-coupled electron transfer (PCET) with phenols to form phenoxyl radicals, with dihydroanthracene to form anthracene, and with (2,4-di tert-butyltetrazolium-5-yl)amide to extrude a tetrazyl radical. PCET from the latter generates the isolable corresponding one-electron reduced compound with a neutral, zwitterionic axial 2,4-di tert-butyltetrazolium-5-yl)amido ligand. Electron paramagnetic resonance and density functional theoretical analyses suggest an electronic structure wherein the manganese atom remains Mn(III) and the OIM ligand has been reduced by one electron to a monoradical noninnocent ligand. The result indicates PCET processes whereby the proton is transferred to the axial ligand to extrude tBuNH2, the electron is transferred to the equatorial ligand, and the central metal remains relatively unperturbed.


Assuntos
Complexos de Coordenação/química , Compostos Macrocíclicos/química , Manganês/química , Nitrogênio/química , Prótons , Transporte de Elétrons , Ligantes , Modelos Moleculares , Conformação Molecular
5.
Inorg Chem ; 57(14): 8673-8680, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29953222

RESUMO

Biohazards and chemical hazards as well as radioactive hazards have always been a threat to human health. The search for solutions to these problems is an ongoing worldwide effort. In order to control biohazards by chemical methods, a synthetically useful fused tricyclic iodine-rich compound, 2,6-diiodo-3,5-dinitro-4,9-dihydrodipyrazolo [1,5- a:5',1'- d][1,3,5]triazine (5), with good detonation performance was synthesized, characterized, and its properties determined. This compound which acts as an agent defeat weapon has been shown to destroy certain microorganisms effectively by releasing iodine after undergoing decomposition or combustion. The small iodine residues remaining will not be deleterious to human life after 1 month.


Assuntos
Desinfetantes/farmacologia , Substâncias Explosivas/farmacologia , Iodo/química , Triazinas/farmacologia , Desinfetantes/síntese química , Desinfetantes/química , Escherichia coli/efeitos dos fármacos , Substâncias Explosivas/síntese química , Substâncias Explosivas/química , Calefação , Staphylococcus aureus/efeitos dos fármacos , Triazinas/síntese química , Triazinas/química
6.
Inorg Chem ; 57(14): 8181-8188, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29975049

RESUMO

The combustion mechanism of [AlCp*]4 (Cp* = pentamethylcyclopentadienyl), a ligated aluminum(I) cluster, was studied by a combination of experimental and theoretical methods. Two complementary experimental methods, temperature-programmed reaction and T-jump time-of-flight mass spectrometry, were used to investigate the decomposition behaviors of [AlCp*]4 in both anaerobic and oxidative environments, revealing AlCp* and Al2OCp* to be the major decomposition products. The observed product distribution and reaction pathways are consistent with the prediction from molecular dynamics simulations and static density functional theory calculations. These studies demonstrated that experiment and theory can indeed serve as complementary and predictive means to study the combustion behaviors of ligated aluminum clusters and may help in engineering stable compounds as candidates for rocket propellants.

7.
Chemistry ; 23(66): 16753-16757, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29047175

RESUMO

Sodium salts of iodine-rich pyrazole and imidazole with 1-(2-bromoethyl)-5-aminotetrazole are useful precursors for energetic N,N'-ethylene-bridged polyiodoazoles. Compounds 1-3 were characterized with IR, and 1 H and 13 C NMR spectroscopy as well as elemental analyses. The molecular structures of 1 and 2 were confirmed by using single crystal X-ray diffraction. Heats of formation were calculated using Gaussian 03 and detonation properties and biocidal efficiency were calculated with CHEETAH 7. The decomposition products of 1-3 destroy microbes more effectively than some previously reported biocides since the thermal decomposition occurs at below 400 °C without addition of oxidizer or combustion adjuvant.


Assuntos
Etilenos/química , Tetrazóis/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X , Iodo/química , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho
8.
Inorg Chem ; 56(21): 13547-13552, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29035045

RESUMO

Energetic bridged triiodopyrazoles and triiodoimidazoles were designed and synthsized by reacting potassium triiodopyrazolate or triiodoimidazolate with corresponding dichloro compounds. All compounds were fully characterized by 1H and 13C NMR spectroscopy, IR spectroscopy, and elemental analyses. The structure of compound 1 was further confirmed by single-crystal X-ray diffraction. All of the compounds exhibit good thermal stability with decomposition temperatures between 199 and 270 °C and high densities ranging from 2.804 to 3.358 g/cm3. The detonation performances and the detonation products were calculated by CHEETAH 7. Compound 3 (Dv = 4765 m s-1; P = 17.9 GPa) and compound 7 (Dv = 4841 m s-1; P = 18.5 GPa) show comparable detonation pressure to TNT, and high iodine content makes them promising as energy and biocides storage compounds.

9.
J Phys Chem A ; 121(24): 4678-4687, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28569507

RESUMO

The tetrameric Al(I) cyclopentadienyl compound Al4Cp*4 (Cp* = C5Me5) is a prototypical low-valence Al compound, with delocalized bonding between four Al(I) atoms and η5 ligands bound to the cluster exterior. The synthesis of new [AlR]4 (R = C5Me4Pr, C5Me4iPr) tetramers is presented. Though these systems failed to crystallize, comparison of variable-temperature 27Al NMR data with density functional theory (DFT) calculations indicate that these are Al4R4 tetramers analogous to Al4Cp*4 but with increased ligand steric bulk. NMR, DFT, and Atoms in Molecules analyses show that these clusters are enthalpically more stable as tetramers than the Cp* variant, due in part to noncovalent interactions across the bulkier ligand groups. Thermochemistry calculations for the low-valence metal interactions were found to be extremely sensitive to the DFT methodology used; the M06-2X functional with a cc-pVTZ basis set is shown to provide very accurate values for the enthalpy of tetramerization and 27Al NMR shifts. This computational method is then used to predict geometrical structures, noncovalent ligand interactions, and monomer/tetramer equilibrium in solution for a series of Al(I) cyclopentadienyl compounds of varying steric bulk.

10.
J Am Chem Soc ; 138(42): 13960-13966, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27700083

RESUMO

A class of tunable visible and near-infrared donor-acceptor Stenhouse adduct (DASA) photoswitches were efficiently synthesized in two to four steps from commercially available starting materials with minimal purification. Using either Meldrum's or barbituric acid "acceptors" in combination with aniline-based "donors", an absorption range spanning from 450 to 750 nm is obtained. Additionally, photoisomerization results in complete decoloration for all adducts, yielding fully transparent, colorless solutions and films. Detailed investigations using density functional theory, nuclear magnetic resonance, and visible absorption spectroscopies provide valuable insight into the unique structure-property relationships for this novel class of photoswitches. As a final demonstration, selective photochromism is accomplished in a variety of solvents and polymer matrices, a significant advantage for applications of this new generation of DASAs.

11.
Chemistry ; 22(30): 10548-57, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27339316

RESUMO

The first synthetic manganese tetrazene complexes are described as a redox pair comprising anionic [Mn(N4 Ad2 )2 ](-) (1) and neutral Mn(N4 Ad2 )2 (2) complexes (N4 Ad2 =[Ad-N-N=N-N-Ad](2-) ). Compound 1 is obtained in two forms as lithium salts, one as a cationic Li2 Mn cluster, and one as a Mn-Li 1D ionic polymer. Compound 1 is electronically described as a Mn(III) center with two [N4 Ad2 ](2-) ligands. The one-electron oxidized 2 is crystalized in two morphologies, one as pure 2 and one as an acetonitrile adduct. Despite similar composition, the behavior of 2 differs in the two morphologies. Compound 2-MeCN is relatively air and temperature stable. Crystalline 2, on the other hand, exhibits a compositional, dynamic disorder wherein the tetrazene metallacycle ring-opens into a metal imide/azide complex detectable by X-ray crystallography and FTIR spectroscopy. Electronic structure of 2 was examined by EPR and XPS spectroscopies and DFT calculations, which indicate 2 is best described as a Mn(III) ion with an anion radical delocalized across the two ligands through spin-polarization effects.

12.
Inorg Chem ; 55(24): 12844-12850, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27989173

RESUMO

Two classes of iodine-rich salts that consist of iodine-rich cations and iodate (IO3-) or periodate (IO4-) anions were synthesized. The synthesis of analogous I3O8- salts was more difficult because of poor solubility and hydrolytic instability. All iodine-rich salts were fully characterized by infrared, 1H nuclear magnetic resonance, and 13C nuclear magnetic resonance spectroscopy as well as elemental analyses. The molecular structures of compounds 15 and 24 were elucidated by X-ray single-crystal diffraction. Additionally, the heats of formation were calculated with Gaussian 03. The detonation properties and biocidal efficiency were calculated and evaluated using CHEETAH 7.


Assuntos
Anti-Infecciosos/química , Imidazóis/química , Iodatos/química , Iodo/química , Ácido Periódico/química , Sais/química , Cristalografia por Raios X , Estrutura Molecular , Análise Espectral
13.
J Chem Phys ; 144(2): 024703, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26772583

RESUMO

Ab initio simulations are used to show that graphene vacancy sites may offer a means of templated growth of metalloid aluminum clusters from their monohalide precursors. We present density functional theory and ab initio molecular dynamics simulations of the aluminum halide AlCl interacting with a graphene surface. Unlike a bare Al adatom, AlCl physisorbs weakly on vacancy-free graphene with little charge transfer and no hybridization with carbon orbitals. The barrier for diffusion of AlCl along the surface is negligible. Covalent bonding is seen only with vacancies and results in strong chemisorption and considerable distortion of the nearby lattice. Car-Parrinello molecular dynamics simulations of AlCl liquid around a graphene single vacancy show spontaneous metalloid cluster growth via a process of repeated insertion reactions. This suggests a means of templated cluster nucleation and growth on a carbon substrate and provides some confirmation for the role of a trivalent aluminum species in nucleating a ligated metalloid cluster from AlCl and AlBr solutions.

14.
Small ; 10(24): 5077-86, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25123503

RESUMO

The use of carbon nanotubes (CNTs) as cylindrical reactor vessels has become a viable means for synthesizing graphene nanoribbons (GNRs). While previous studies demonstrated that the size and edge structure of the as-produced GNRs are strongly dependent on the diameter of the tubes and the nature of the precursor, the atomic interactions between GNRs and surrounding CNTs and their effect on the electronic properties of the overall system are not well understood. Here, it is shown that the functional terminations of the GNR edges can have a strong influence on the electronic structure of the system. Analysis of SWCNTs before and after the insertion of sulfur-terminated GNRs suggests a metallization of the majority of semiconducting SWCNTs. This is indicated by changes in the radial breathing modes and the D and G band Raman features, as well as UV-vis-NIR absorption spectra. The variation in resonance conditions of the nanotubes following GNR insertion make direct (n,m) assignment by Raman spectroscopy difficult. Thus, density functional theory calculations of representative GNR/SWCNT systems are performed. The results confirm significant changes in the band structure, including the development of a metallic state in the semiconducting SWCNTs due to sulfur/tube interactions. The GNR-induced metallization of semiconducting SWCNTs may offer a means of controlling the electronic properties of bulk CNT samples and eliminate the need for a physical separation of semiconducting and metallic tubes.

15.
J Chem Phys ; 141(14): 144304, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25318719

RESUMO

Car-Parrinello molecular dynamics combined with a metadynamics algorithm is used to study the initial interaction of O2 with the low-valence organoaluminum clusters Al4Cp4 (Cp=C5H5) and Al4Cp4* (Cp*=C5[CH3]5). Prior to reaction with the aluminum core, simulations suggest that the oxygen undergoes a hindered crossing of the steric barrier presented by the outer ligand monolayer. A combination of two collective variables based on aluminum/oxygen distance and lateral oxygen displacement was found to produce distinct reactant, product, and transition states for this process. In the methylated cluster with Cp* ligands, a broad transition state of 45 kJ/mol was observed due to direct steric interactions with the ligand groups and considerable oxygen reorientation. In the non-methylated cluster the ligands distort away from the oxidizer, resulting in a barrier of roughly 34 kJ/mol with minimal O2 reorientation. A study of the oxygen/cluster system fixed in a triplet multiplicity suggests that the spin state does not affect the initial steric interaction with the ligands. The metadynamics approach appears to be a promising means of analyzing the initial steps of such oxidation reactions for ligand-protected clusters.

16.
J Chem Phys ; 140(10): 104313, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628175

RESUMO

We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O2 molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O2 diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material.

17.
J Phys Chem A ; 117(9): 2035-43, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23398143

RESUMO

Temperature-dependent vapor pressures of solid explosives and their byproducts are calculated to an accuracy of 0.32 log units using a modified form of the conductor-like screening model for real solvents (COSMO-RS). Accurate predictions for solids within COSMO-RS require correction for the free energy of fusion as well as other effects such as van der Waals interactions. Limited experimental data on explosives is available to determine these corrections, and thus we have extended the COSMO-RS model by introducing a quantitative structure-property relationship to estimate a lumped correction factor using only information from standard quantum chemistry calculations. This modification improves the COSMO-RS estimate of ambient vapor pressure by more than 1 order of magnitude for a range of nitrogen-rich explosives and their derivatives, bringing the theoretical predictions to within typical experimental error bars for vapor pressure measurements. The estimated temperature dependence of these vapor pressures also agrees well with available experimental data, which is particularly important for estimating environmental transport and gas evolution for buried explosives or environmentally contaminated locations. This technique is then used to predict vapor pressures for a number of explosives and degradation products for which experimental data is not readily available.

18.
J Chem Phys ; 136(13): 134315, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22482560

RESUMO

Negative-ion photoelectron spectroscopy and ab initio simulations are used to study the variation in magnetic structure in Mn(x)O(y) (x = 3, 4[semicolon] y = 1, 2) clusters. The ferrimagnetic and antiferromagnetic ground-state structures of Mn(x)O(y) are 0.16-1.20 eV lower in energy than their ferromagnetic isomers. The presence of oxygen thus stabilizes low-spin isomers relative to the preferred high-spin ordering of bare Mn(3) and Mn(4). Each cluster has a preferred overall magnetic moment, and no evidence is seen of competing states with different spin multiplicities. However, non-degenerate isomags, which possess the same spin multiplicity but different arrangements of local moments, do contribute additional features and peak broadening in the photoelectron spectra. Proper accounting for all possible isomags is shown to be critical for accurate computational prediction of the spectra.

19.
J Phys Chem A ; 115(48): 14100-9, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22007955

RESUMO

We present quantum chemistry simulations of aluminum clusters surrounded by a surface layer of cyclopentadiene-type ligands to evaluate the potential of such complexes as novel fuels or energetic materials. Density functional theory simulations are used to examine the aluminum-ligand bonding and its variation as the size of the aluminum cluster increases. The organometallic bond at the surface layer arises mainly from ligand charge donation into the Al p orbitals balanced with repulsive polarization effects. Functionalization of the ligand and changes in Al cluster size are found to alter the relative balance of these effects, but the surface organometallic bond generally remains stronger than Al-Al bonds elsewhere in the cluster. In large clusters, such as the experimentally observed Al(50)Cp(12)*, this suggests that unimolecular thermal decomposition likely proceeds through loss of surface AlCp* units, exposing the strained interior aluminum core. The calculated heats of combustion per unit volume for these systems are high, approaching 60% that of pure aluminum. We discuss the possibility of using organometallic aluminum clusters as a means of achieving rapid combustion in propellants and fuels.

20.
ACS Appl Mater Interfaces ; 12(36): 40541-40547, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786243

RESUMO

A significant number of challenges are encountered when developing biocidal agents with high throwing capacity for biosafety applications. Now a three-dimensional metal-organic framework (3D MOF) {MOF (2), [Cu(atrz)(IO3)2]n (atrz = 4,4'-azo-1,2,4-triazole)} was obtained using a postsynthetic method from MOF (1) {[Cu(atrz)3(NO3)2]n}. Benefitting from the oxygen-rich and small volume of the iodate (IO3) ligands (2.73 Å) in MOF (2) compared to the atrz ligand (7.70 Å) in MOF (1), the density of MOF (2) is 3.168 g cm-3, nearly twice that of its precursor. Its detonation velocity of 7271 ms-1 exceeds that of TNT (trinitrotoluene) and its detonation pressure of 40.6 GPa is superior to that of HMX (cyclotetramethylenetetranitramine) (1,3,5,7-tetranitro-1,3,5,7-tetrazoctane, 39.2 Gpa), which are the highest detonation properties for a biocidal agent. Its superior detonation performance results in its main product, I2, being distributed over a wide area, markedly reducing the diffusion of harmful microorganisms. This study offers novel insight not only for high-energy-density materials but also for huge potential applications as biocidal agents.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Estruturas Metalorgânicas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ligantes , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA