Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(45): e2209382119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36603188

RESUMO

Studies using rodent models have shown that relapse to drug or food seeking increases progressively during abstinence, a behavioral phenomenon termed "incubation of craving." Mechanistic studies of incubation of craving have focused on specific neurobiological targets within preselected brain areas. Recent methodological advances in whole-brain immunohistochemistry, clearing, and imaging now allow unbiased brain-wide cellular resolution mapping of regions and circuits engaged during learned behaviors. However, these whole-brain imaging approaches were developed for mouse brains, while incubation of drug craving has primarily been studied in rats, and incubation of food craving has not been demonstrated in mice. Here, we established a mouse model of incubation of palatable food craving and examined food reward seeking after 1, 15, and 60 abstinence days. We then used the neuronal activity marker Fos with intact-brain mapping procedures to identify corresponding patterns of brain-wide activation. Relapse to food seeking was significantly higher after 60 abstinence days than after 1 or 15 days. Using unbiased ClearMap analysis, we identified increased activation of multiple brain regions, particularly corticostriatal structures, following 60 but not 1 or 15 abstinence days. We used orthogonal SMART2 analysis to confirm these findings within corticostriatal and thalamocortical subvolumes and applied expert-guided registration to investigate subdivision and layer-specific activation patterns. Overall, we 1) identified brain-wide activity patterns during incubation of food seeking using complementary analytical approaches and 2) provide a single-cell resolution whole-brain atlas that can be used to identify functional networks and global architecture underlying the incubation of food craving.


Assuntos
Fissura , Metanfetamina , Animais , Camundongos , Encéfalo , Fissura/fisiologia , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Alimentos , Recidiva , Autoadministração
2.
J Neurosci ; 43(23): 4217-4233, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37160369

RESUMO

Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.


Assuntos
Calcineurina , Cocaína , Feminino , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Núcleo Accumbens/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Citometria de Fluxo , Sinapses , Córtex Pré-Frontal/fisiologia , Cocaína/farmacologia
3.
J Neurosci ; 43(14): 2597-2614, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898838

RESUMO

We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AI→Pir and PL→Pir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AI→Pir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PL→Pir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AI→Pir and PL→Pir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AI→Pir and PL→Pir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.


Assuntos
Fentanila , Córtex Piriforme , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Preferências Alimentares , Alimentos , Autoadministração , Extinção Psicológica , Comportamento de Procura de Droga/fisiologia
4.
J Neurosci ; 40(44): 8463-8477, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33051346

RESUMO

Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal tripeptide Arginine-Glycine-Aspartate (RGD) domains that bind and signal through integrins. Integrins are heterodimeric receptors composed of αß subunits, and a primary signaling kinase is focal adhesion kinase (FAK). We previously showed that MMP activation is necessary for and potentiates cued reinstatement of cocaine seeking, and MMP-induced catalysis stimulates ß3-integrins to induce t-SP. Here, we determined whether ß3-integrin signaling through FAK and cofilin (actin depolymerization factor) is necessary to promote synaptic growth during t-SP. Using a small molecule inhibitor to prevent FAK activation, we blocked cued-induced cocaine reinstatement and increased spine head diameter (dh). Immunohistochemistry on NAcore labeled spines with ChR2-EYFP virus, showed increased immunoreactivity of phosphorylation of FAK (p-FAK) and p-cofilin in dendrites of reinstated animals compared with extinguished and yoked saline, and the p-FAK and cofilin depended on ß3-integrin signaling. Next, male and female transgenic rats were used to selectively label D1 or D2 neurons with ChR2-mCherry. We found that p-FAK was increased during drug seeking in both D1 and D2-medium spiny neurons (MSNs), but increased p-cofilin was observed only in D1-MSNs. These data indicate that ß3-integrin, FAK and cofilin constitute a signaling pathway downstream of MMP activation that is involved in promoting the transient synaptic enlargement in D1-MSNs induced during reinstated cocaine by drug-paired cues.SIGNIFICANCE STATEMENT Drug-associated cues precipitate relapse, which is correlated with transient synaptic enlargement in the accumbens core. We showed that cocaine cue-induced synaptic enlargement depends on matrix metalloprotease signaling in the extracellular matrix (ECM) through ß3-integrin to activate focal adhesion kinase (FAK) and phosphorylate the actin binding protein cofilin. The nucleus accumbens core (NAcore) contains two predominate neuronal subtypes selectively expressing either D1-dopamine or D2-dopamine receptors. We used transgenic rats to study each cell type and found that cue-induced signaling through cofilin phosphorylation occurred only in D1-expressing neurons. Thus, cocaine-paired cues initiate cocaine reinstatement and synaptic enlargement through a signaling cascade selectively in D1-expressing neurons requiring ECM stimulation of ß3-integrin-mediated phosphorylation of FAK (p-FAK) and cofilin.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina beta3/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/psicologia , Sinais (Psicologia) , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Comportamento de Procura de Droga , Ativação Enzimática , Humanos , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Recidiva , Sinapses
5.
Addict Biol ; 26(3): e12943, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32683756

RESUMO

Neuronal ensembles in ventromedial prefrontal cortex (vmPFC) play a role in both cocaine and palatable food seeking. However, it is unknown whether similar or different vmPFC neuronal ensembles mediate food and cocaine seeking. Here, we used the Daun02 inactivation procedure to assess whether the neuronal ensembles mediating food and cocaine seeking can be functionally distinguished. We trained male and female Fos-LacZ rats to self-administer palatable food pellets and cocaine on alternating days for 18 days. We then exposed the rats to a brief nonreinforced food- or cocaine-seeking test to induce Fos and ß-gal in neuronal ensembles associated with food or cocaine seeking, respectively and infused Daun02 into vmPFC to ablate the ß-gal-expressing ensembles. Two days later, we tested the rats for food or cocaine seeking under extinction conditions. Although inactivation of the food-seeking ensemble did not influence food or cocaine seeking, inactivation of the cocaine-seeking ensemble reduced cocaine seeking but not food seeking. Results indicate that the neuronal ensemble activated by cocaine seeking in vmPFC is functionally separate from the ensemble activated by food seeking.


Assuntos
Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Neurônios/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Feminino , Masculino , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Autoadministração , Fatores de Tempo
6.
J Neurosci ; 39(11): 2041-2051, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30622165

RESUMO

Outputs from the nucleus accumbens (NAc) include projections to the ventral pallidum and the ventral tegmental area and subtantia nigra in the ventral mesencephalon. The medium spiny neurons (MSN) that give rise to these pathways are GABAergic and consist of two populations of equal number that are segregated by differentially expressed proteins, including D1- and D2-dopamine receptors. Afferents to the ventral pallidum arise from both D1- and D2-MSNs, whereas the ventral mesencephalon is selectively innervated by D1-MSN. To determine the extent of collateralization of D1-MSN to these axon terminal fields we used retrograde labeling in transgenic mice expressing tdTomato selectively in D1-MSN, and found that a large majority of D1-MSN in either the shell or core subcompartments of the accumbens collateralized to both output structures. Approximately 70% of D1-MSNs projecting to the ventral pallidum collateralized to the ventral mesencephalon, whereas >90% of mesencephalic D1-MSN afferents collateralized to the ventral pallidum. In contrast, <10% of dorsal striatal D1-MSNs collateralized to both the globus pallidus and ventral mesencephalon. D1-MSN activation is required for conditioned cues to induce cocaine seeking. To determine which D1-MSN projection mediates cued cocaine seeking, we selectively transfected D1-MSNs in transgenic rats with an inhibitory Gi-coupled DREADD. Activation of the transfected Gi-DREADD with clozapine-N-oxide administered into the ventral pallidum, but not into the ventral mesencephalon, blocked cue-induced cocaine seeking. These data show that, although accumbens D1-MSNs largely collateralize to both the ventral pallidum and ventral mesencephalon, only D1-MSN innervation of the ventral pallidum is necessary for cue-induced cocaine seeking.SIGNIFICANCE STATEMENT Activity in D1 dopamine receptor-expressing neurons in the NAc is required for rodents to respond to cocaine-conditioned cues and relapse to drug seeking behaviors. The D1-expressing neurons project to both the ventral pallidum and ventral mesencephalon, and we found that a majority of the neurons that innervate the ventral pallidum also collateralize to the ventral mesencephalon. However, despite innervating both structures, only D1 innervation of the ventral pallidum mediates cue-induced cocaine seeking.


Assuntos
Prosencéfalo Basal/fisiologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/fisiologia , Animais , Prosencéfalo Basal/citologia , Condicionamento Clássico , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Núcleo Accumbens/citologia , Ratos Long-Evans , Ratos Transgênicos
7.
J Neurosci ; 39(37): 7394-7407, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31331999

RESUMO

Recent studies suggest that the ventral medial prefrontal cortex (vmPFC) encodes both operant drug self-administration and extinction memories. Here, we examined whether these opposing memories are encoded by distinct neuronal ensembles within the vmPFC with different outputs to the nucleus accumbens (NAc) in male and female rats. Using cocaine self-administration (3 h/d for 14 d) and extinction procedures, we demonstrated that vmPFC was similarly activated (indexed by Fos) during cocaine-seeking tests after 0 (no-extinction) or 7 extinction sessions. Selective Daun02 lesioning of the self-administration ensemble (no-extinction) decreased cocaine seeking, whereas Daun02 lesioning of the extinction ensemble increased cocaine seeking. Retrograde tracing with fluorescent cholera toxin subunit B injected into NAc combined with Fos colabeling in vmPFC indicated that vmPFC self-administration ensembles project to NAc core while extinction ensembles project to NAc shell. Functional disconnection experiments (Daun02 lesioning of vmPFC and acute dopamine D1-receptor blockade with SCH39166 in NAc core or shell) confirm that vmPFC ensembles interact with NAc core versus shell to play dissociable roles in cocaine self-administration versus extinction, respectively. Our results demonstrate that neuronal ensembles mediating cocaine self-administration and extinction comingle in vmPFC but have distinct outputs to the NAc core and shell that promote or inhibit cocaine seeking.SIGNIFICANCE STATEMENT Neuronal ensembles within the vmPFC have recently been shown to play a role in self-administration and extinction of food seeking. Here, we used the Daun02 chemogenetic inactivation procedure, which allows selective inhibition of neuronal ensembles identified by the activity marker Fos, to demonstrate that different ensembles for cocaine self-administration and extinction memories coexist in the ventral mPFC and interact with distinct subregions of the nucleus accumbens.


Assuntos
Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Rede Nervosa/química , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Núcleo Accumbens/química , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/química , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Autoadministração
8.
Eur J Neurosci ; 49(2): 165-178, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307667

RESUMO

Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking. We trained rats to lever press for cocaine (1.0 mg/kg per infusion, 3-hr/day, 18 day) or heroin (0.03 mg/kg per infusion) on alternating days (9 day for each drug); drug infusions were paired with either intermittent or continuous light cue. Next, the rats underwent extinction training followed by tests for cue-induced reinstatement where they were exposed to either heroin- or cocaine-associated cues. We observed cue-selective reinstatement of drug seeking: the heroin cue selectively reinstated heroin seeking and the cocaine cue selectively reinstated cocaine seeking. We used Fos immunohistochemistry to assess cue-induced neuronal activation in different subregions of the medial prefrontal cortex, dorsal striatum, nucleus accumbens, and amygdala. Fos expression results indicated that only the prelimbic cortex (PL) was activated by both heroin and cocaine cues; in contrast, no significant cue-induced neuronal activation was observed in other brain areas. RNA in situ hybridization indicated that the proportion of glutamatergic and GABAergic markers in PL Fos-expressing cells was similar for the heroin and cocaine cue-activated neurons. Overall, the results indicate that PL may be a common brain area involved in both heroin and cocaine seeking during polydrug use.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Cocaína/administração & dosagem , Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Heroína/administração & dosagem , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Operante , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Modelos Animais de Doenças , Extinção Psicológica/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal , Ratos Long-Evans
9.
Learn Mem ; 25(9): 455-460, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30115767

RESUMO

Given that addiction has been characterized as a disorder of maladaptive learning and memory, one critical question is whether there are unique physical adaptations within neuronal ensembles that support addiction-related learned behavior. The search for the physical mechanisms of encoding these and other memories in the brain, often called the engram as a whole, continues despite decades of research. As we develop new technologies and tools that allow us to study cue- and behavior-activated Fos-expressing neuronal ensembles, the possibility of identifying the engrams of learning and memory is moving into the realm of reality rather than speculation. It has become clear from recent studies that there are specific functional, electrophysiological alterations unique to Fos-expressing ensemble neurons that may participate in encoding memories. The ultimate goal is to identify the addicted engram and reverse the physical changes that support this maladaptive form of learning.


Assuntos
Aprendizagem/fisiologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Humanos
10.
J Neurosci ; 37(4): 1014-1027, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123032

RESUMO

We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we studied the role of dorsolateral striatum (DLS) and dorsomedial striatum (DMS) in this incubation. We trained rats to self-administer palatable food pellets (6 d, 6 h/d) and methamphetamine (12 d, 6 h/d). We then assessed relapse to methamphetamine seeking under extinction conditions after 1 and 21 abstinence days. Between tests, the rats underwent voluntary abstinence (using a discrete choice procedure between methamphetamine and food; 20 trials/d) for 19 d. We used in situ hybridization to measure the colabeling of the activity marker Fos with Drd1 and Drd2 in DMS and DLS after the tests. Based on the in situ hybridization colabeling results, we tested the causal role of DMS D1 and D2 family receptors, and DMS neuronal ensembles in "incubated" methamphetamine seeking, using selective dopamine receptor antagonists (SCH39166 or raclopride) and the Daun02 chemogenetic inactivation procedure, respectively. Methamphetamine seeking was higher after 21 d of voluntary abstinence than after 1 d (incubation of methamphetamine craving). The incubated response was associated with increased Fos expression in DMS but not in DLS; Fos was colabeled with both Drd1 and Drd2 DMS injections of SCH39166 or raclopride selectively decreased methamphetamine seeking after 21 abstinence days. In Fos-lacZ transgenic rats, selective inactivation of relapse test-activated Fos neurons in DMS on abstinence day 18 decreased incubated methamphetamine seeking on day 21. Results demonstrate a role of DMS dopamine D1 and D2 receptors in the incubation of methamphetamine craving after voluntary abstinence and that DMS neuronal ensembles mediate this incubation. SIGNIFICANCE STATEMENT: In human addicts, abstinence is often self-imposed and relapse can be triggered by exposure to drug-associated cues that induce drug craving. We recently developed a rat model of incubation of methamphetamine craving after choice-based voluntary abstinence. Here, we used classical pharmacology, in situ hybridization, immunohistochemistry, and the Daun02 inactivation procedure to demonstrate a critical role of dorsomedial striatum neuronal ensembles in this new form of incubation of drug craving.


Assuntos
Corpo Estriado/fisiologia , Fissura/fisiologia , Ingestão de Alimentos/fisiologia , Metanfetamina/administração & dosagem , Neurônios/fisiologia , Temperança , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Corpo Estriado/efeitos dos fármacos , Fissura/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/psicologia , Feminino , Injeções Intraventriculares , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Autoadministração , Temperança/psicologia
11.
J Neurosci ; 37(36): 8845-8856, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28779019

RESUMO

Learned associations between environmental stimuli and rewards drive goal-directed learning and motivated behavior. These memories are thought to be encoded by alterations within specific patterns of sparsely distributed neurons called neuronal ensembles that are activated selectively by reward-predictive stimuli. Here, we use the Fos promoter to identify strongly activated neuronal ensembles in rat prelimbic cortex (PLC) and assess altered intrinsic excitability after 10 d of operant food self-administration training (1 h/d). First, we used the Daun02 inactivation procedure in male FosLacZ-transgenic rats to ablate selectively Fos-expressing PLC neurons that were active during operant food self-administration. Selective ablation of these neurons decreased food seeking. We then used male FosGFP-transgenic rats to assess selective alterations of intrinsic excitability in Fos-expressing neuronal ensembles (FosGFP+) that were activated during food self-administration and compared these with alterations in less activated non-ensemble neurons (FosGFP-). Using whole-cell recordings of layer V pyramidal neurons in an ex vivo brain slice preparation, we found that operant self-administration increased excitability of FosGFP+ neurons and decreased excitability of FosGFP- neurons. Increased excitability of FosGFP+ neurons was driven by increased steady-state input resistance. Decreased excitability of FosGFP- neurons was driven by increased contribution of small-conductance calcium-activated potassium (SK) channels. Injections of the specific SK channel antagonist apamin into PLC increased Fos expression but had no effect on food seeking. Overall, operant learning increased intrinsic excitability of PLC Fos-expressing neuronal ensembles that play a role in food seeking but decreased intrinsic excitability of Fos- non-ensembles.SIGNIFICANCE STATEMENT Prefrontal cortex activity plays a critical role in operant learning, but the underlying cellular mechanisms are unknown. Using the chemogenetic Daun02 inactivation procedure, we found that a small number of strongly activated Fos-expressing neuronal ensembles in rat PLC play an important role in learned operant food seeking. Using GFP expression to identify Fos-expressing layer V pyramidal neurons in prelimbic cortex (PLC) of FosGFP-transgenic rats, we found that operant food self-administration led to increased intrinsic excitability in the behaviorally relevant Fos-expressing neuronal ensembles, but decreased intrinsic excitability in Fos- neurons using distinct cellular mechanisms.


Assuntos
Potenciais de Ação/fisiologia , Aprendizagem por Associação/fisiologia , Condicionamento Operante/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos
12.
Nat Rev Neurosci ; 14(11): 743-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24088811

RESUMO

Correlational data suggest that learned associations are encoded within neuronal ensembles. However, it has been difficult to prove that neuronal ensembles mediate learned behaviours because traditional pharmacological and lesion methods, and even newer cell type-specific methods, affect both activated and non-activated neurons. In addition, previous studies on synaptic and molecular alterations induced by learning did not distinguish between behaviourally activated and non-activated neurons. Here, we describe three new approaches--Daun02 inactivation, FACS sorting of activated neurons and Fos-GFP transgenic rats--that have been used to selectively target and study activated neuronal ensembles in models of conditioned drug effects and relapse. We also describe two new tools--Fos-tTA transgenic mice and inactivation of CREB-overexpressing neurons--that have been used to study the role of neuronal ensembles in conditioned fear.


Assuntos
Medo/fisiologia , Neurônios/patologia , Transtornos Relacionados ao Uso de Substâncias/patologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Condicionamento Psicológico , Dopamina/fisiologia , Genes Precoces/genética , Humanos , Sistema Límbico/fisiologia , Camundongos , Ratos , Recompensa , Transtornos Relacionados ao Uso de Substâncias/genética
13.
J Neurosci ; 36(33): 8612-23, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535909

RESUMO

UNLABELLED: The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving. We trained adolescent and adult male rats to self-administer nicotine (2 h/d for 12 d) and assessed cue-induced nicotine seeking in extinction tests (1 h) after 1, 7, 14, or 28 withdrawal days. In both adult and adolescent rats, nicotine seeking in the relapse tests followed an inverted U-shaped curve, with maximal responding on withdrawal day 14. Independent of the withdrawal day, nicotine seeking in the relapse tests was higher in adult than in adolescent rats. Analysis of Fos expression in different brain areas of adolescent and adult rats on withdrawal days 1 and 14 showed time-dependent increases in the number of Fos-positive neurons in central and basolateral amygdala, orbitofrontal cortex, ventral and dorsal medial prefrontal cortex, and nucleus accumbens core and shell. In adult Fos-lacZ transgenic rats, selective inactivation of nicotine-cue-activated Fos neurons in central amygdala, but not orbitofrontal cortex, decreased "incubated" nicotine seeking on withdrawal day 14. Our results demonstrate that incubation of nicotine craving occurs after adolescent-onset nicotine self-administration and that neuronal ensembles in central amygdala play a critical role in this incubation. SIGNIFICANCE STATEMENT: The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. It is currently unknown whether incubation of craving also occurs after adolescent-onset nicotine self-administration. The brain areas that mediate such incubation are also unknown. Here, we used a rat model of incubation of drug craving, the neuronal activity marker Fos, and the Daun02 chemogenetic inactivation method to demonstrate that incubation of nicotine craving is also observed after adolescent-onset nicotine self-administration and that neuronal ensembles in the central nucleus of the amygdala play a critical role in this incubation in adult rats.


Assuntos
Núcleo Central da Amígdala/citologia , Fissura/fisiologia , Neurônios/fisiologia , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Fatores Etários , Animais , Animais Recém-Nascidos , Núcleo Central da Amígdala/metabolismo , Daunorrubicina/análogos & derivados , Daunorrubicina/metabolismo , Extinção Psicológica , Feminino , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Autoadministração , Síndrome de Abstinência a Substâncias/fisiopatologia , Sacarose/administração & dosagem , Fatores de Tempo , beta-Galactosidase/metabolismo
14.
J Neurosci ; 36(36): 9446-53, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605618

RESUMO

UNLABELLED: Abstinence from alcohol is associated with the recruitment of neurons in the central nucleus of the amygdala (CeA) in nondependent rats that binge drink alcohol and in alcohol-dependent rats. However, whether the recruitment of this neuronal ensemble in the CeA is causally related to excessive alcohol drinking or if it represents a consequence of excessive drinking remains unknown. We tested the hypothesis that the recruitment of a neuronal ensemble in the CeA during abstinence is required for excessive alcohol drinking in nondependent rats that binge drink alcohol and in alcohol-dependent rats. We found that inactivation of the CeA neuronal ensemble during abstinence significantly decreased alcohol drinking in both groups. In nondependent rats, the decrease in alcohol intake was transient and returned to normal the day after the injection. In dependent rats, inactivation of the neuronal ensemble with Daun02 produced a long-term decrease in alcohol drinking. Moreover, we observed a significant reduction of somatic withdrawal signs in dependent animals that were injected with Daun02 in the CeA. These results indicate that the recruitment of a neuronal ensemble in the CeA during abstinence from alcohol is causally related to excessive alcohol drinking in alcohol-dependent rats, whereas a similar neuronal ensemble only partially contributed to alcohol-binge-like drinking in nondependent rats. These results identify a critical neurobiological mechanism that may be required for the transition to alcohol dependence, suggesting that focusing on the neuronal ensemble in the CeA may lead to a better understanding of the etiology of alcohol use disorders and improve medication development. SIGNIFICANCE STATEMENT: Alcohol dependence recruits neurons in the central nucleus of the amygdala (CeA). Here, we found that inactivation of a specific dependence-induced neuronal ensemble in the CeA reversed excessive alcohol drinking and somatic signs of alcohol dependence in rats. These results identify a critical neurobiological mechanism that is required for alcohol dependence, suggesting that targeting dependence neuronal ensembles may lead to a better understanding of the etiology of alcohol use disorders, with implications for diagnosis, prevention, and treatment.


Assuntos
Alcoolismo/patologia , Núcleo Central da Amígdala/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Núcleo Central da Amígdala/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Operante/efeitos dos fármacos , Daunorrubicina/análogos & derivados , Daunorrubicina/farmacologia , Modelos Animais de Doenças , Etanol/administração & dosagem , Masculino , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos da radiação , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Ratos , Ratos Transgênicos , Esquema de Reforço , Autoadministração , Estatísticas não Paramétricas , Fatores de Tempo
15.
J Neurosci ; 36(11): 3281-94, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26985037

RESUMO

In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive alcohol use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol drinking. We recently developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and then test for relapse to alcohol seeking in Contexts A and B without alcohol or shock. Here, we studied the role of projections to nucleus accumbens (NAc) shell from ventral subiculum (vSub), basolateral amygdala, paraventricular thalamus, and ventral medial prefrontal cortex in context-induced relapse after punishment-imposed abstinence. First, we measured double-labeling of the neuronal activity marker Fos with the retrograde tracer cholera toxin subunit B (injected in NAc shell) and demonstrated that context-induced relapse is associated with selective activation of the vSub→NAc shell projection. Next, we reversibly inactivated the vSub with GABA receptor agonists (muscimol+baclofen) before the context-induced relapse tests and provided evidence for a causal role of vSub in this relapse. Finally, we used a dual-virus approach to restrict expression of the inhibitory κ opioid-receptor based DREADD (KORD) in vSub→NAc shell projection neurons. We found that systemic injections of the KORD agonist salvinorin B, which selectively inhibits KORD-expressing neurons, decreased context-induced relapse to alcohol seeking. Our results demonstrate a critical role of vSub in context-induced relapse after punishment-imposed abstinence and further suggest a role of the vSub→NAc projection in this relapse. SIGNIFICANCE STATEMENT: In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol use. Until recently, an animal model of this human condition did not exist. We developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and test for relapse to alcohol seeking in Contexts A and B. Here, we used neuroanatomical, neuropharmacological, and chemogenetic methods to demonstrate a role of ventral subiculum and potentially its projections to nucleus accumbens in context-induced relapse after punishment-imposed abstinence.


Assuntos
Abstinência de Álcool/psicologia , Consumo de Bebidas Alcoólicas/psicologia , Condicionamento Operante/fisiologia , Extinção Psicológica/fisiologia , Núcleo Accumbens/fisiopatologia , Punição , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Toxina da Cólera/metabolismo , Condicionamento Operante/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos Clerodânicos , Etanol/administração & dosagem , Extinção Psicológica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Ratos , Receptores Opioides kappa/metabolismo , Recidiva , Reforço Psicológico , Autoadministração , Transdução Genética
16.
J Neurosci ; 36(25): 6691-703, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27335401

RESUMO

UNLABELLED: In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. SIGNIFICANCE STATEMENT: A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the ventral mPFC inhibits reward seeking. In this paper, we use the Daun02 chemogenetic inactivation procedure to demonstrate that Fos-expressing neuronal ensembles mediating both food reward and extinction memories intermingle within the same ventral mPFC area.


Assuntos
Extinção Psicológica/fisiologia , Neurônios/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Daunorrubicina/análogos & derivados , Daunorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Extinção Psicológica/efeitos dos fármacos , GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Masculino , Rememoração Mental/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Long-Evans , Autoadministração , Fatores de Tempo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
17.
Cell Mol Neurobiol ; 37(8): 1487-1499, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28260198

RESUMO

Microparticles have potential as neuron-specific delivery platforms and devices with many applications in neuroscience, pharmacology, and biomedicine. To date, most literature suggests that neurons are not phagocytic cells capable of internalizing microparticles larger than 0.5 µm. We report that neurons transport fluorescently labeled silica microspheres with diameters of 1-2 µm into neurons in vitro and in rat brain without having overt effects on cell viability. Using flow cytometry, fluorescence-activated cell sorting, and confocal and electron microscopy, we first found that SH-SY5Y human neuroblastoma cells internalized 1-µm silicon microspheres with surface charges of -70 mV (hydroxyl and carboxyl), -30 mV (amino), and +40 mV (ammonio). Uptake was rapid, within 2-4 h, and did not affect cell viability 48 h later. Flow cytometry assays indicate that SH-SY5Y cells internalize 1- and 1.5-µm microspheres at the same rate over a 24-h incubation period. Electron microscopy confirms that SH-SY5Y cells internalize 1-, 1.5-, and 2-µm microspheres. Confocal microscopy demonstrated that primary cortical neurons also internalized 1-, 1.5-, and 2-µm amino microspheres within 4 h. Finally, we injected 1-µm amino microspheres into rat striatum and found microspheres inside neurons. Overall, neurons can internalize microspheres up to 2 µm in diameter with a range of surface chemical groups and charges. These findings allow a host of neuroscience and neuroengineering applications including intracellular microdevices within neurons.


Assuntos
Endocitose/fisiologia , Microesferas , Neurônios/metabolismo , Dióxido de Silício/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Endocitose/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Ratos , Ratos Long-Evans , Dióxido de Silício/farmacologia
18.
J Neurosci ; 35(30): 10750-61, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224858

RESUMO

Loss of control over drinking is a key deficit in alcoholism causally associated with malfunction of the medial prefrontal cortex (mPFC), but underlying molecular and cellular mechanisms remain unclear. Cue-induced reinstatement of alcohol seeking activates a subset of mPFC neurons in rats, identified by their common expression of the activity marker cFos and comprised of both principal and interneurons. Here, we used cFos-lacZ and pCAG-lacZ transgenic rats for activity-dependent or nonselective inactivation of neurons, respectively, which by their lacZ encoded ß-galactosidase activity convert the inactive prodrug Daun02 into the neurotoxin daunorubicin. We report that activity-dependent ablation of a neuronal ensemble in the infralimbic but not the prelimbic subregion induced excessive alcohol seeking. The targeted neuronal ensemble was specific for the cue-induced response because stress-induced reinstatement was not affected in these animals. Importantly, nonselective inactivation of infralimbic neurons, using pCAG-lacZ rats, was without functional consequence on the cue-induced reinstatement task. Thus, inhibitory control over alcohol seeking is exerted by distinct functional ensembles within the infralimbic cortex rather than by a general inhibitory tone of this region on the behavioral output. This indicates a high level of functional compartmentation within the rat mPFC whereat many functional ensembles could coexist and interact within the same subregion. SIGNIFICANCE STATEMENT: Hebb's (1949) idea of memories as being represented in local neuronal networks is supported by identification of transiently stable activity patterns within subgroups of neurons. However, it is difficult to link individual networks to specific memory tasks, for example a learned behavior. By a novel approach of activity-dependent ablation, here we identify a specific neuronal ensemble located in the infralimbic subregion of the medial prefrontal cortex that controls a seeking response for alcohol in rats. Our data demonstrate that functional output depends on specific neuronal ensembles within a given brain region rather than on the global activity of that region, which raises important questions about the interpretation of numerous earlier experiments using site-directed silencing or stimulation for elucidating brain function.


Assuntos
Sinais (Psicologia) , Comportamento de Procura de Droga/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Alcoolismo/fisiopatologia , Animais , Extinção Psicológica , Imuno-Histoquímica , Masculino , Ratos , Ratos Transgênicos
19.
J Neurosci ; 35(15): 6241-53, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878294

RESUMO

Alcohol and nicotine are the two most co-abused drugs in the world. Previous studies have shown that nicotine can increase alcohol drinking in nondependent rats, yet it is unknown whether nicotine facilitates the transition to alcohol dependence. We tested the hypothesis that chronic nicotine will speed up the escalation of alcohol drinking in rats and that this effect will be accompanied by activation of sparsely distributed neurons (neuronal ensembles) throughout the brain that are specifically recruited by the combination of nicotine and alcohol. Rats were trained to respond for alcohol and made dependent using chronic, intermittent exposure to alcohol vapor, while receiving daily nicotine (0.8 mg/kg) injections. Identification of neuronal ensembles was performed after the last operant session, using immunohistochemistry. Nicotine produced an early escalation of alcohol drinking associated with compulsive alcohol drinking in dependent, but not in nondependent rats (air exposed), as measured by increased progressive-ratio responding and increased responding despite adverse consequences. The combination of nicotine and alcohol produced the recruitment of discrete and phenotype-specific neuronal ensembles (∼4-13% of total neuronal population) in the nucleus accumbens core, dorsomedial prefrontal cortex, central nucleus of the amygdala, bed nucleus of stria terminalis, and posterior ventral tegmental area. Blockade of nicotinic receptors using mecamylamine (1 mg/kg) prevented both the behavioral and neuronal effects of nicotine in dependent rats. These results demonstrate that nicotine and activation of nicotinic receptors are critical factors in the development of alcohol dependence through the dysregulation of a set of interconnected neuronal ensembles throughout the brain.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Encéfalo/metabolismo , Comportamento Compulsivo/complicações , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Recompensa , Animais , Encéfalo/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressores do Sistema Nervoso Central/administração & dosagem , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Etanol/administração & dosagem , Glutamato Descarboxilase/metabolismo , Masculino , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinina/administração & dosagem , Ratos , Ratos Wistar , Autoadministração , Fatores de Tempo
20.
J Neurosci ; 35(21): 8232-44, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019338

RESUMO

Cue-induced methamphetamine seeking progressively increases after withdrawal (incubation of methamphetamine craving), but the underlying mechanisms are largely unknown. We determined whether this incubation is associated with alterations in candidate genes in dorsal striatum (DS), a brain area implicated in cue- and context-induced drug relapse. We first measured mRNA expression of 24 candidate genes in whole DS extracts after short (2 d) or prolonged (1 month) withdrawal in rats following extended-access methamphetamine or saline (control condition) self-administration (9 h/d, 10 d). We found minimal changes. Next, using fluorescence-activated cell sorting, we compared gene expression in Fos-positive dorsal striatal neurons, which were activated during "incubated" cue-induced drug-seeking tests after prolonged withdrawal, with nonactivated Fos-negative neurons. We found significant increases in mRNA expression of immediate early genes (Arc, Egr1), Bdnf and its receptor (Trkb), glutamate receptor subunits (Gria1, Gria3, Grm1), and epigenetic enzymes (Hdac3, Hdac4, Hdac5, GLP, Dnmt3a, Kdm1a) in the Fos-positive neurons only. Using RNAscope to determine striatal subregion and cell-type specificity of the activated neurons, we measured colabeling of Fos with Drd1 and Drd2 in three DS subregions. Fos expression was neither subregion nor cell-type specific (52.5 and 39.2% of Fos expression colabeled with Drd1 and Drd2, respectively). Finally, we found that DS injections of SCH23390 (C17H18ClNO), a D1-family receptor antagonist known to block cue-induced Fos induction, decreased incubated cue-induced methamphetamine seeking after prolonged withdrawal. Results demonstrate a critical role of DS in incubation of methamphetamine craving and that this incubation is associated with selective gene-expression alterations in cue-activated D1- and D2-expressing DS neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Corpo Estriado/metabolismo , Fissura/fisiologia , Metanfetamina/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptor trkB/biossíntese , Receptores de Glutamato/biossíntese , Animais , Corpo Estriado/efeitos dos fármacos , Fissura/efeitos dos fármacos , Sinais (Psicologia) , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Regulação da Expressão Gênica , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA