Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2302668120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490535

RESUMO

Catecholamine-stimulated ß2-adrenergic receptor (ß2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous ß-agonists in the treatment of airway disease. ß2AR signaling is tightly regulated by GRKs and ß-arrestins, which together promote ß2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias ß2AR signaling toward the Gs pathway while avoiding ß-arrestin-mediated effects may provide a strategy to improve the functional consequences of ß2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the ß2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit ß-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of ß-arrestin recruitment to the ß2AR while having no effect on ß2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the ß2AR and protects against the functional desensitization of ß-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the ß2AR with minimal effects on the ß1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the ß2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the ß2AR.


Assuntos
Arrestina , Transdução de Sinais , beta-Arrestinas/metabolismo , Arrestina/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
2.
Br J Pharmacol ; 179(19): 4692-4708, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732075

RESUMO

BACKGROUND AND PURPOSE: ß-Adrenoceptor agonists relieve airflow obstruction by activating ß2 -adrenoceptors, which are G protein-coupled receptors (GPCRs) expressed on human airway smooth muscle (HASM) cells. The currently available ß-adrenoceptor agonists are balanced agonists, however, and signal through both the stimulatory G protein (Gs )- and ß-arrestin-mediated pathways. While Gs signalling is beneficial and promotes HASM relaxation, ß-arrestin activation is associated with reduced Gs efficacy. In this context, biased ligands that selectively promote ß2 -adrenoceptor coupling to Gs signalling represent a promising strategy to treat asthma. Here, we examined several ß-adrenoceptor agonists to identify Gs -biased ligands devoid of ß-arrestin-mediated effects. EXPERIMENTAL APPROACH: Gs -biased ligands for the ß2 -adrenoceptor were identified by high-throughput screening and then evaluated for Gs interaction, Gi interaction, cAMP production, ß-arrestin interaction, GPCR kinase (GRK) phosphorylation of the receptor, receptor trafficking, ERK activation, and functional desensitization of the ß2 -adrenoceptor. KEY RESULTS: We identified ractopamine, dobutamine, and higenamine as Gs -biased agonists that activate the Gs /cAMP pathway upon ß2 -adrenoceptor stimulation while showing minimal Gi or ß-arrestin interaction. Furthermore, these compounds did not induce any receptor trafficking and had reduced GRK5-mediated phosphorylation of the ß2 -adrenoceptor. Finally, we observed minimal physiological desensitization of the ß2 -adrenoceptor in primary HASM cells upon treatment with biased agonists. CONCLUSION AND IMPLICATIONS: Our work demonstrates that Gs -biased signalling through the ß2 -adrenoceptor may prove to be an effective strategy to promote HASM relaxation in the treatment of asthma. Such biased compounds may also be useful in identifying the molecular mechanisms that determine biased signalling and in design of safer drugs.


Assuntos
Asma , Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacologia , Asma/tratamento farmacológico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Fenótipo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , beta-Arrestina 1/metabolismo , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacologia
3.
J Exp Clin Cancer Res ; 37(1): 314, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547810

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive neoplasia with no effective therapy. Our laboratory has developed a unique TNBC cell model presenting epithelial mesenchymal transition (EMT) a process known to be important for tumor progression and metastasis. There is increasing evidence showing that epigenetic mechanisms are involved in the activation of EMT. The objective of this study is to epigenetically reverse the process of EMT in TNBC by using DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi). METHODS: We evaluated the antitumor effect of three DNMTi and six HDACi using our TNBC cell model by MTT assay, migration and invasion assay, three dimensional culture, and colony formation assay. We then performed the combined treatment both in vitro and in vivo using the most potent DNMTi and HDACi, and tested the combined treatment in a panel of breast cancer cell lines. We investigated changes of EMT markers and potential signaling pathways associated with the antitumor effects. RESULTS: We showed that DNMTi and HDACi can reprogram highly aggressive TNBC cells that have undergone EMT to a less aggressive phenotype. SGI-110 and MS275 are superior to other seven compounds being tested. The combination of SGI with MS275 exerts a greater effect than single agent alone in inhibiting cell proliferation, motility, colony formation, and stemness of cancer cells. We also demonstrated that MS275 and the combination of SGI with MS275 exert in vivo antitumor effect. We revealed that the combined treatment synergistically reverses EMT through inhibiting EpCAM cleavage and WNT signaling, suppressing mutant p53, ZEB1, and EZH2, and inducing E-cadherin, apoptosis, as well as histone H3 tri-methylation. CONCLUSIONS: Our study showed that DNMTi and HDACi exert antitumor activity in TNBC cells partially by epigenetically reprograming EMT. Our findings strongly suggest that TNBC is sensitive to epigenetic therapies. Therefore, we propose a new strategy to treat TNBC by using the combination of SGI-110 with MS275, which exerts superior antitumor effects by simultaneously targeting multiple pathways.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Epigenômica/métodos , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias de Mama Triplo Negativas/genética , Animais , Transição Epitelial-Mesenquimal , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA