Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Am Chem Soc ; 146(21): 14539-14545, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38754971

RESUMO

We propose using cocrystals as effective polarization matrices for triplet dynamic nuclear polarization (DNP) at room temperature. The polarization source can be uniformly doped into cocrystals formed through acid-acid, amide-amide, and acid-amide synthons. The dense-packing crystal structures, facilitated by multiple hydrogen bonding and π-π interactions, result in extended T1 relaxation times, enabling efficient polarization diffusion within the crystals. Our study demonstrates the successful polarization of a DNP-magnetic resonance imaging molecular probe, such as urea, within a cocrystal matrix at room temperature using triplet-DNP.

2.
Small ; : e2400063, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461517

RESUMO

Most mechanochromic luminescent compounds are crystalline and highly hydrophobic; however, mechanochromic luminescent molecular assemblies comprising amphiphilic molecules have rarely been explored. This study investigated mechanochromic luminescent supramolecular fibers composed of dumbbell-shaped 9,10-bis(phenylethynyl)anthracene-based amphiphiles without any tetraethylene glycol (TEG) substituents or with two TEG substituents. Both amphiphiles formed water-insoluble supramolecular fibers via linear hydrogen bond formation. Both compounds acquired water solubility when solid samples composed of supramolecular fibers are ground. Grinding induces the conversion of 1D supramolecular fibers into micellar assemblies where fluorophores can form excimers, thereby resulting in a large redshift in the fluorescence spectra. Excimer emission from the ground amphiphile without TEG chains is retained after dissolution in water. The micelles are stable in water because hydrophilic dendrons surround the hydrophobic luminophores. By contrast, when water is added to a ground amphiphile having TEG substituents, fragmented supramolecular fibers with the same molecular arrangement as the initial supramolecular fibers are observed, because fragmented fibers are thermodynamically preferable to micelles as the hydrophobic arrays of fluorophores are covered with hydrophilic TEG chains. This leads to the recovery of the initial fluorescent properties for the latter amphiphile. These supramolecular fibers can be used as practical mechanosensors to detect forces at the mesoscale.

3.
Angew Chem Int Ed Engl ; 63(25): e202404843, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622084

RESUMO

In this study, we investigated reversible intermolecular proton shifting (IPS) coupled with spin transition (ST) in a novel FeII complex. The host FeII complex and the guest carboxylic acid anion were connected by intermolecular hydrogen bonds (IHBs). We extended the intramolecular proton transfer coupled ST phenomenon to the intermolecular system. The dynamic phenomenon was confirmed by variable-temperature single-crystal X-ray diffraction, neutron crystallography, and infrared spectroscopy. The mechanism of IPS was further validated using density functional theory calculations. The discovery of IPS-coupled ST in crystalline molecular materials provides good insights into fundamental processes and promotes the design of novel multifunctional materials with tunable properties for various applications, such as optoelectronics, information storage, and molecular devices.

4.
J Am Chem Soc ; 145(14): 8122-8129, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976916

RESUMO

Quinoidal molecules based on dipyrrolyldiketone boron complexes (QPBs), in which pyrrole units were connected by a partially conjugated system as a singlet spin coupler, were synthesized. QPB, which was stabilized by the introduction of a benzo unit at the pyrrole ß-positions, formed a closed-shell tautomer conformation that showed near-infrared absorption. The deprotonated species, monoanion QPB- and dianion QPB2-, showing over 1000 nm absorption, were formed by the addition of bases, providing ion pairs in combination with countercations. Diradical properties were observed in QPB2-, whose hyperfine coupling constants were modulated by ion-pairing with π-electronic and aliphatic cations, demonstrating cation-dependent diradical properties. VT NMR and ESR along with a theoretical study revealed that the singlet diradical was more stable than the triplet diradical.

5.
J Am Chem Soc ; 145(35): 19177-19181, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37623927

RESUMO

Multiple proton transfer (PT) controllable by external stimuli plays a crucial role in fundamental chemistry, biological activity, and material science. However, in crystalline systems, controlling multiple PT, which results in a distinct protonation state, remains challenging. In this study, we developed a novel tridentate ligand and iron(II) complex with a short hydrogen bond (HB) that exhibits a PT-coupled spin transition (PCST). Single-crystal X-ray and neutron diffraction measurements revealed that the positions of the two protons in the complex can be controlled by temperature and photoirradiation based on the thermal- and photoinduced PCST. The obtained results suggest that designing molecules that form short HBs is a promising approach for developing multiple PT systems in crystals.

6.
Inorg Chem ; 62(5): 2040-2048, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695190

RESUMO

The high-potential iron-sulfur protein (HiPIP) is an electron-transporting protein that functions in the photosynthetic electron-transfer system and possesses a cubane-type [4Fe-4S] cluster in the active center. Characterization of the geometrical and electronic structures of the [4Fe-4S] cluster leads to an understanding of the functions in HiPIP, which are expected to be influenced by the environment surrounding the [4Fe-4S] cluster. This work characterized the geometrical and electronic structures of the [4Fe-4S] cluster in the reduced HiPIP and evaluated their effects on the protein environment using the density functional theory (DFT) approach. DFT calculations showed that the structural asymmetry and spin delocalization between iron atoms allowed for the acquisition of a unique stable geometrical and electronic structure in the open-shell singlet. In addition, the formation of an Fe-Fe bond accompanying the spin delocalization was found to depend on the interatomic distance. A comparison of the calculated stable structures with and without consideration of the amino acids around the [4Fe-4S] cluster demonstrated that the surrounding amino acids stabilized the unique geometrical and electronic structure of the [4Fe-4S] cluster in HiPIP.


Assuntos
Proteínas Ferro-Enxofre , Teoria da Densidade Funcional , Espectroscopia de Ressonância de Spin Eletrônica , Domínio Catalítico , Proteínas Ferro-Enxofre/química , Aminoácidos
7.
Phys Chem Chem Phys ; 25(21): 15023-15029, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37212593

RESUMO

Enantiomeric excesses (ee) of L-amino acids in meteorites are higher than 10%, especially for isovaline (Iva). This suggests the existence of some kind of triggering mechanism responsible for the amplification of the ee from an initial small value. Here, we investigate the dimeric molecular interactions of alanine (Ala) and Iva in solution as an initial nucleation step of crystals at an accurate first-principles level. We find that the dimeric interaction of Iva is more chirality-dependent than that of Ala, thus providing a clear molecular-level insight into the enantioselectivity of amino acids in solution.

8.
Phys Chem Chem Phys ; 25(17): 12394-12400, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092303

RESUMO

The application of single-crystal neutron diffraction (SCND) to observe proton-transfer phenomena in crystalline compounds exhibiting unusual protonation states or proton dynamics has garnered significant research interest in recent years. However, proton tautomerism, which results in different protonation states before and after proton transfer, has never been observed using the SCND technique. Thus, to observe the proton tautomerism phenomenon by SCND measurements, we developed an iron(II) complex that forms a large crystal and exhibits a proton-transfer-coupled spin transition (PCST). The presence of the two types of proton tautomers was determined by conventional analysis of the proton position by X-ray crystallography, infrared spectroscopy, and density functional theory calculations. Finally, our results confirmed that proton tautomerism was successfully observed for the first time using variable-temperature SCND measurements.

9.
Chirality ; 35(9): 645-651, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37122074

RESUMO

Aldehydes and carboxylic acids are widely used as catalysts for efficient racemization process of amino acids. However, the detailed reaction mechanism remains unclear. This work aims to clarify the racemization mechanism of aspartic acid (Asp) catalyzed by salicylaldehyde and acetic acid by using computational approaches. Density functional theory was used to obtain the structures and relative energies of 10 intermediates and five transition states, thus characterizing the main stages of the reaction. The calculated energy diagram shows that the dehydration step has the highest energy barrier, followed by the reaction step to change the chirality of Asp, which is a crucial process for racemization. In the dehydration reaction, water molecules can induce a remarkable decrease in the required energy.

10.
Angew Chem Int Ed Engl ; 59(35): 14781-14787, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32452130

RESUMO

A proton-electron coupling system, exhibiting unique bistability or multistability of the protonated state, is an attractive target for developing new switchable materials based on proton dynamics. Herein, we present an iron(II) hydrazone crystalline compound, which displays the stepwise transition and bistability of proton transfer at the crystal level. These phenomena are realized through the coupling with spin transition. Although the multi-step transition with hysteresis has been observed in various systems, the corresponding behavior of proton transfer has not been reported in crystalline systems; thus, the described iron(II) complex is the first example. Furthermore, because proton transfer occurs only in one of the two ligands and π electrons redistribute in it, the dipole moment of the iron(II) complexes changes with the proton transfer, wherein the total dipole moment in the crystal was canceled out owing to the antiferroelectric-like arrangement.

11.
J Am Chem Soc ; 141(36): 14384-14393, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31422661

RESUMO

An important technique to realize novel electron- and/or proton-based functionalities is to use a proton-electron coupling mechanism. When either a proton or electron is excited, the other one is modulated, producing synergistic functions. However, although compounds with proton-coupled electron transfer have been synthesized, crystalline molecular compounds that exhibit proton-transfer-coupled spin-transition (PCST) behavior have not been reported. Here, we report the first example of a PCST Fe(II) complex, wherein the proton lies on the N of hydrazone and pyridine moieties in the ligand at high-spin and low-spin Fe(II), respectively. When the Fe(II) complex is irradiated with light, intramolecular proton transfer occurs from pyridine to hydrazone in conjunction with the photoinduced spin transition via the PCST mechanism. Because the light-induced excited high-spin state is trapped at low temperatures in the Fe(II) complex-a phenomenon known as the light-induced excited-spin-state trapping effect-the light-induced proton-transfer state, wherein the proton lies on the N of hydrazone, is also trapped as a metastable state. The proton transfer was accomplished within 50 ps at 190 K. The bistable nature of the proton position, where the position can be switched by light irradiation, is useful for modulating proton-based functionalities in molecular devices.


Assuntos
Compostos Ferrosos/química , Prótons , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Análise Espectral
12.
Inorg Chem ; 58(18): 12280-12288, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31464432

RESUMO

Formation of an active oxygen species at the dicopper site of pMMO is studied by using density functional theory (DFT) calculations. The role of the amino acid residues of tyrosine (Tyr374) and glutamate (Glu35) located in the second coordination sphere of the dicopper site is discussed in detail. The phenolic proton of the tyrosine residue is transferred to the Cu2O2 core in a two-step manner via the glutamate residue, and an electron is directly transferred to the Cu2O2 core. These proton- and electron-transfer processes induce the O-O bond cleavage of the µ-η2:η2-peroxodicopper(II) species to form the (µ-oxo)(µ-hydroxo)CuIICuIII species, which is able to play a key role of methane hydroxylation at the dicopper site of pMMO ( Inorg. Chem. 2013 , 52 , 7907 ). This proton-coupled electron-transfer mechanism is a little different from that in tyrosinase in that the proton of substrate tyrosine is directly transferred to the dicopper site ( J. Am. Chem. Soc. 2006 , 128 , 9873 ) because there is no proton acceptor in the vicinity of the dicopper site of tyrosinase. The rate-determining step for the formation of the (µ-oxo)(µ-hydroxo)CuIICuIII species is determined to be the O-O bond cleavage. These results shed new light on the interpretation of the role of the tyrosine and glutamate residues located in the second coordination sphere of the dicopper site of pMMO.

13.
Inorg Chem ; 58(11): 7274-7284, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31094515

RESUMO

While hydrogenase and photosystem II enzymes are known to oxidize H2 and H2O, respectively, a recently reported iridium aqua complex [IrIII(η5-C5Me5){bpy(COOH)2}(H2O)]2+ is able to oxidize both of the molecules and generate energies as in the fuel and solar cells ( Ogo ChemCatChem 2017 , 9 , 4024 - 4028 ). To understand the mechanism behind such an interesting bifunctional catalyst, in the present study, we perform density functional theory (DFT) calculations on the dual catalytic cycle of H2 and H2O oxidations by the iridium aqua complex. In the H2 oxidation, we found that the H-H bond is easily cleaved in a heterolytic fashion, and the resultant iridium hydride complex is significantly stabilized by the presence of H2O molecules, due to dihydrogen bond. The rate-determining step of this reaction is found to be the H2O → H2 ligand substitution with an activation energy of 10.7 kcal/mol. In the H2O oxidation, an iridium oxo complex originating from an oxidation of the iridium aqua complex forms a hydroperoxide complex, where an O-O bond is formed with an activation energy of 21.0 kcal/mol. Such a relatively low activation barrier is possible only when at least two H2O molecules are present in the reaction, allowing the water nucleophilic attack (WNA) mechanism to take place. The present study suggests and discusses in detail six reaction steps required for the dual catalytic cycle to complete.

14.
J Phys Chem A ; 123(44): 9579-9586, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31625743

RESUMO

Formic acid (HCOOH) is a suitable hydrogen storage material because of its high gravimetric and volumetric H2 capacities. Although H2 is produced by the thermal decomposition of HCOOH (HCOOH → H2 + CO2, dehydrogenation), the production of water and carbon monoxide (HCOOH → H2O + CO, dehydration) is the major pathway in HCOOH decomposition despite the thermodynamic favorability of the dehydrogenation process over the dehydration process. A large number of experimental and theoretical studies have suggested that both processes are competitive or that the dehydrogenation process has a lower activation energy in HCOOH decomposition. In the present work, we revisit the factors hindering the progress of the dehydrogenation process, using a whole chemical reaction network based on the graph theory. The calculated chemical reaction network shows that the factor controlling the dehydrogenation and dehydration processes is simple and fundamental and can be explained by the oxidation number of carbon and the betweenness centrality. Based on this understanding of the factors hindering the progress of dehydrogenation, the advantage of the dehydration process in HCOOH decomposition is discussed.

15.
J Am Chem Soc ; 140(22): 6883-6892, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29749234

RESUMO

Stable square planar organocopper(III) complexes (CuNCC2, CuNCC4, and CuBN) supported by carbacorrole-based tetradentate macrocyclic ligands with NNNC coordination cores were synthesized, and their structures were elucidated by spectroscopic means including X-ray crystallographic analysis. On the basis of their distinct planar structures, X-ray absorption/photoelectron spectroscopic features, and temperature-independent diamagnetic nature, these organocopper complexes can be preferably considered as novel organocopper(III) species. The remarkable stability of the high-valent Cu(III) states of the complexes stems from the closed-shell electronic structure derived from the peculiar NNNC coordination of the corrole-modified frameworks, which contrasts with the redox-noninnocent radical nature of regular corrole copper(II) complexes with an NNNN core. The proposed structure was supported by DFT (B3LYP) calculations. Furthermore, a π-laminated dimer architecture linked through the inner carbons was obtained from the one-electron oxidation of CuNCC4. We envisage that the precise manipulation of the molecular orbital energies and redox profiles of these organometallic corrole complexes could eventually lead to the isolation of yet unexplored high-valent metal species and the development of their organometallic reactions.

16.
Inorg Chem ; 57(1): 8-11, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29249146

RESUMO

A dicopper(II) complex, [Cu2(µ-OH)(6-hpa)]3+, where 6-hpa is 1,2-bis[2-[bis(2-pyridylmethyl)aminomethyl]-6-pyridyl]ethane, generates an oxyl radical of CuIIO• and catalyzes the selective hydroxylation of benzene to phenol. From the structural similarity to methane activation catalysts (e.g., bare CuO+ ion, Cu-ZSM-5, and particulate methane monooxygenase), it is expected to catalyze methane hydroxylation. The catalytic performance for the hydroxylation of methane to methanol by this dicopper complex is investigated by using density functional theory (DFT) calculations. The whole reaction of the methane conversion involves two steps without radical species: (1) C-H bond dissociation of methane by the CuIIO• moiety and (2) C-O bond formation with methyl migration. In the first step, the activation barrier is calculated to be 10.2 kcal/mol, which is low enough for reactions taking place under normal conditions. The activation barrier by the other CuIIO2• moiety is higher than that by the CuIIO• moiety, which should work to turn the next catalytic cycle. DFT calculations show that the dicopper complex has a precondition to hydroxylate methane to methanol. Experimental verification is required to look in detail at the reactivity of this dicopper complex.

17.
Phys Chem Chem Phys ; 20(15): 10311-10318, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29610782

RESUMO

Composite materials of acidic polymers and basic molecules have high proton-conductivity. Understanding the proton conduction mechanism of the composite materials, which depends on hydrogen bond characteristics, is an important task for developing materials with high proton-conductivity. This work is focused on poly(vinylphosphonic acid)-imidazole and alginic acid-imidazole as examples of composite materials of acidic polymers and basic molecules and examines the local structure and hydrogen bond characteristics of imidazole (Im) molecules in composite materials using density functional theory. The results show that Im molecules interact strongly with polymeric acids in these composite materials and that the interaction energy increases with the increase in the number of Im molecules. The rotational motion of Im molecules occurs in the segment where only Im molecules without excess protons are hydrogen-bonded to each other. The calculation results for the various segments, which depend on the hydrogen bonding environment, show that the proton conduction process in composite materials consists of the following steps: proton transfer in the segment where Im molecules interact with polymeric acids, proton transfer in the segment where Im molecules are affected by excess protons, and Grotthuss diffusion with reorientation of Im molecules in the segment where only Im molecules without excess protons are bonded to each other.

18.
Phys Chem Chem Phys ; 19(25): 16857-16866, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28627543

RESUMO

We propose a simple method for potential construction in the diabatic picture and the estimation of thermal rate constants for intermolecular proton transfer reactions using quantum dynamics simulations carried out on the constructed potentials. For symmetrical and asymmetrical proton transfer pairs, the obtained potentials and rate constants were in good agreement with the reference values. Furthermore, our method is used for the analysis of proton transfer in crystalline imidazolium succinate and discusses the proton conductivity in terms of intermolecular proton transfer. This approach can be used to estimate proton transfer rate constants for large molecular systems, even when the calculation of the transition state is impossible.

19.
Chem Sci ; 15(21): 8008-8018, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817574

RESUMO

Hydrogen-bonded organic frameworks (HOFs) are porous organic materials constructed via hydrogen bonds. HOFs have solubility in specific high-polar organic solvents. Therefore, HOFs can be returned to their components and can be reconstructed, which indicates their high recyclability. Network topologies, which are the frameworks of porous structures, control the pore sizes and shapes of HOFs. Therefore, they strongly affect the functions of porous materials. However, hydrogen bonds are usually weak interactions, and the design of the intended network topology in HOFs from their components has been challenging. Porous organic salts (POSs) are an important class of HOFs, are hierarchically constructed via strong charge-assisted hydrogen bonds between sulfonic acids and amines, and therefore are expected to have high designability of the porous structure. However, the network topology of POSs has been limited to only dia-topology. Here, we combined tetrasulfonic acid with the adamantane core (4,4',4'',4'''-(adamantane-1,3,5,7-tetrayl)tetrabenzenesulfonic acid; AdPS) and triphenylmethylamines with modified substituents in para-positions of benzene rings (TPMA-X, X = F, methyl (Me), Cl, Br, I). We changed the steric hindrance between the adamantane and substituents (X) in TPMA-X and obtained not only the common dia-topology for POSs but also rare sod-topology, and lon- and uni-topologies that are formed for the first time in HOFs. Changing template molecules under preparation helped in successfully isolating the porous structures of AdPS/TPMA-Me with dia-, lon-, and sod-topologies which exhibited different gas adsorption properties. Therefore, for the first time, we demonstrated that the steric design of HOF components facilitated the formation, diversification, and control of the network topologies and functions of HOFs.

20.
Chem Commun (Camb) ; 59(83): 12439-12442, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37773321

RESUMO

A learning model is proposed that predicts both products and reaction pathways by combining machine learning and reaction network approaches. By training 50 fundamental organic reactions, the learning model predicted the products and pathways of 35 test reactions with a top-5 accuracy of 68.6%. The model identified the key fragment structures of the intermediates and could be classified as several basic reaction rules in the context of organic chemistry, such as the Markovnikov rule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA