Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(18): 4713-4733.e22, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34352228

RESUMO

SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Imunidade , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Adulto , Idoso , Efeito Espectador , COVID-19/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/patologia , Nasofaringe/virologia , RNA Viral/análise , RNA Viral/genética , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Transcrição Gênica , Carga Viral
2.
Immunity ; 40(5): 706-19, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24792912

RESUMO

Intact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type (WT) CD4(+) T cell transfer, Rag2(-/-)Il10rb(-/-) mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone-marrow-derived macrophages and their ability to secrete IL-10. Importantly, transfer of WT but not Il10rb(-/-) anti-inflammatory macrophages ameliorated colitis induction by WT CD4(+) T cells in Rag2(-/-)Il10rb(-/-) mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.


Assuntos
Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Interleucina-10/imunologia , Receptores de Interleucina-10/imunologia , Transferência Adotiva , Animais , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina-10/deficiência , Receptores de Interleucina-10/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
3.
Immunity ; 38(5): 1025-37, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23623383

RESUMO

Endothelial-dependent mechanisms of mononuclear cell influx are not well understood. We showed that acute stimulation of murine microvascular endothelial cells expressing the tumor necrosis factor receptors TNFR1 and TNFR2 with the soluble cytokine TNF led to CXCR3 chemokine generation. The TNF receptors signaled through interferon regulatory factor-1 (IRF1) to induce interferon-ß (IFN-ß) and subsequent autocrine signaling via the type I IFN receptor and the transcription factor STAT1. Both TNFR2 and TNFR1 were required for IRF1-IFNß signaling and, in human endothelial cells TNFR2 expression alone induced IFN-ß signaling and monocyte recruitment. In vivo, TNFR1 was required for acute renal neutrophil and monocyte influx after systemic TNF treatment, whereas the TNFR2-IRF1-IFN-ß autocrine loop was essential only for macrophage accumulation. In a chronic model of proliferative nephritis, IRF1 and renal-expressed TNFR2 were essential for sustained macrophage accumulation. Thus, our data identify a pathway in endothelial cells that selectively recruits monocytes during a TNF-induced inflammatory response.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Interferon beta/metabolismo , Monócitos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Animais , Comunicação Autócrina/imunologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Inflamação/imunologia , Fator Regulador 1 de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Nefrite/metabolismo , Neutrófilos/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptores CXCR3/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Gastroenterology ; 159(2): 591-608.e10, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428507

RESUMO

BACKGROUND & AIMS: Studies are needed to determine the mechanisms of mucosal dysregulation in patients with inflammatory bowel diseases (IBDs) and differences in inflammatory responses of patients with ulcerative colitis (UC) vs Crohn's disease (CD). We used mass cytometry (CyTOF) to characterize and compare immune cell populations in the mucosa and blood from patients with IBD and without IBD (controls) at single-cell resolution. METHODS: We performed CyTOF analysis of colonic mucosa samples (n = 87) and peripheral blood mononuclear cells (n = 85) from patients with active or inactive UC or CD and controls. We also performed single-cell RNA sequencing, flow cytometry, and RNA in situ hybridization analyses to validate key findings. We used random forest modeling to identify differences in signatures across subject groups. RESULTS: Compared with controls, colonic mucosa samples from patients with IBD had increased abundances of HLA-DR+CD38+ T cells, including T-regulatory cells that produce inflammatory cytokines; CXCR3+ plasmablasts; and IL1B+ macrophages and monocytes. Colonic mucosa samples from patients with UC were characterized by expansion of IL17A+ CD161+ effector memory T cells and IL17A+ T-regulatory cells; expansion of HLA-DR+CD56+ granulocytes; and reductions in type 3 innate lymphoid cells. Mucosal samples from patients with active CD were characterized by IL1B+HLA-DR+CD38+ T cells, IL1B+TNF+IFNG+ naïve B cells, IL1B+ dendritic cells (DCs), and IL1B+ plasmacytoid DCs. Peripheral blood mononuclear cells from patients with active CD differed from those of active UC in that the peripheral blood mononuclear cells from patients with CD had increased IL1B+ T-regulatory cells, IL1B+ DCs and IL1B+ plasmacytoid DCs, IL1B+ monocytes, and fewer group 1 innate lymphoid cells. Random forest modeling differentiated active UC from active CD in colonic mucosa and blood samples; top discriminating features included many of the cellular populations identified above. CONCLUSIONS: We used single-cell technologies to identify immune cell populations specific to mucosa and blood samples from patients with active or inactive CD and UC and controls. This information might be used to develop therapies that target specific cell populations in patients with different types of IBD.


Assuntos
Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Imunidade Celular , Imunofenotipagem/métodos , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Colite Ulcerativa/sangue , Colite Ulcerativa/patologia , Colo/imunologia , Colo/patologia , Doença de Crohn/sangue , Doença de Crohn/patologia , Feminino , Citometria de Fluxo , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , RNA-Seq , Análise de Célula Única , Adulto Jovem
5.
Am J Gastroenterol ; 116(8): 1638-1645, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34047305

RESUMO

INTRODUCTION: Proton pump inhibitor (PPI) use was recently reported to be associated with increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and worse clinical outcomes. The underlying mechanism(s) for this association are unclear. METHODS: We performed a prospective study of hospitalized coronavirus disease 2019 (COVID-19) patients and COVID-negative controls to understand how PPI use may affect angiotensin-converting enzyme 2 (ACE2) expression and stool SARS-CoV-2 RNA. Analysis of a retrospective cohort of hospitalized patients with COVID-19 from March 15, 2020 to August 15, 2020 in 6 hospitals was performed to evaluate the association of PPI use and mortality. Covariates with clinical relevance to COVID-19 outcomes were included to determine predictors of in-hospital mortality. RESULTS: Control PPI users had higher salivary ACE2 mRNA levels than nonusers, 2.39 ± 1.15 vs 1.22 ± 0.92 (P = 0.02), respectively. Salivary ACE2 levels and stool SARS-CoV-2 RNA detection rates were comparable between users and nonusers of PPI. In 694 hospitalized patients with COVID-19 (age = 58 years, 46% men, and 65% black), mortality rate in PPI users and nonusers was 30% (68/227) vs 12.1% (53/439), respectively. Predictors of mortality by logistic regression were PPI use (adjusted odds ratio [aOR] = 2.72, P < 0.001), age (aOR = 1.66 per decade, P < 0.001), race (aOR = 3.03, P = 0.002), cancer (aOR = 2.22, P = 0.008), and diabetes (aOR = 1.95, P = 0.003). The PPI-associated mortality risk was higher in black patients (aOR = 4.16, 95% confidence interval: 2.28-7.59) than others (aOR = 1.62, 95% confidence interval: 0.82-3.19, P = 0.04 for interaction). DISCUSSION: COVID-negative PPI users had higher salivary ACE2 expression. PPI use was associated with increased mortality risk in patients with COVID-19, particularly African Americans.


Assuntos
Enzima de Conversão de Angiotensina 2/sangue , COVID-19/sangue , COVID-19/mortalidade , Inibidores da Bomba de Prótons/efeitos adversos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Medição de Risco
6.
Pediatr Res ; 90(5): 1023-1030, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33504970

RESUMO

BACKGROUND: In infants admitted to an ICU with respiratory failure, there is an association between the ratio of CD8+ to CD4+ T cells within the upper respiratory tract and disease severity. Whether this ratio is associated with respiratory disease severity within children presenting to a pediatric emergency department is not known. METHODS: We studied a convenience sample of 63 children presenting to a pediatric emergency department with respiratory symptoms. T cell subsets in the nasal mucosa were analyzed by flow cytometry. We compared CD4+ and CD8+ T cells subsets in these samples and analyzed the proportion of these subsets that expressed markers associated with tissue residency. RESULTS: We were able to identify major subsets of CD8 and CD4 T cells within the nasal mucosa using flocked swabs. We found no difference in the ratio CD8+ to CD4+ T cells in children with upper or lower respiratory illness. A positive association between tissue-resident memory T cell frequency and patient age was identified. CONCLUSIONS: In our patient populations, the CD8+:CD4+ ratio was not associated with disease severity. The majority of T cells collected on nasal swabs are antigen experienced, and there is an association between the frequency of tissue-resident T cells and age. IMPACT: Immune cell populations from the nasal mucosa can be captured using flocked nasal swabs and analyzed by flow cytometry. Nasal CD8+:CD4+ ratio does not predict respiratory illness severity in children presenting to the emergency department. The frequency of CD8+ and CD4+ resident memory T cells within the nasal mucosa increases with age.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Mucosa Nasal/imunologia , Doenças Respiratórias/imunologia , Subpopulações de Linfócitos T , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Masculino
7.
J Immunol ; 198(7): 2906-2915, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213503

RESUMO

IL-10 limits the magnitude of inflammatory gene expression following microbial stimuli and is essential to prevent inflammatory disease; however, the molecular basis for IL-10-mediated inhibition remains elusive. Using a genome-wide approach, we demonstrate that inhibition of transcription is the primary mechanism for IL-10-mediated suppression in LPS-stimulated macrophages and that inhibited genes can be divided into two clusters. Genes in the first cluster are inhibited only if IL-10 is included early in the course of LPS stimulation and is strongly enriched for IFN-inducible genes. Genes in the second cluster can be rapidly suppressed by IL-10 even after transcription is initiated, and this is associated with suppression of LPS-induced enhancer activation. Interestingly, the ability of IL-10 to rapidly suppress active transcription exhibits a delay following LPS stimulation. Thus, a key pathway for IL-10-mediated suppression involves rapid inhibition of enhancer function during the secondary phase of the response to LPS.


Assuntos
Regulação da Expressão Gênica/imunologia , Inflamação/genética , Inflamação/imunologia , Interleucina-10/imunologia , Transcrição Gênica/imunologia , Animais , Western Blotting , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase
8.
Gastroenterology ; 151(6): 1100-1104, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693323

RESUMO

Interleukin 10 receptor (IL10R)-deficient mice develop spontaneous colitis and, similarly, patients with loss-of-function mutations in IL10R develop severe infant-onset inflammatory bowel disease. Loss of IL10R signaling in mouse and human macrophages is associated with increased production of interleukin 1ß. We demonstrated that innate immune production of IL1ß mediates colitis in IL10R-deficient mice. Transfer of Il1r1-/- CD4+ T cells into Rag1-/-/Il10rb-/- mice reduced the severity of their colitis (compared to mice that received CD4+ T cells that express IL1R), accompanied by decreased production of interferon gamma, tumor necrosis factor-α, and IL17A. In macrophages from mice without disruption of IL10R signaling or from healthy humans (controls), incubation with IL10 reduced canonical activation of the inflammasome and production of IL1ß through transcriptional and post-translational regulation of NLRP3. Lipopolysaccharide and adenosine triphosphate stimulation of macrophages from Il10rb-/- mice or IL10R-deficient patients resulted in increased production of IL1ß. Moreover, in human IL10R-deficient macrophages, lipopolysaccharide stimulation alone triggered IL1ß secretion via non-canonical, caspase 8-dependent activation of the inflammasome. We treated 2 IL10R-deficient patients with severe and treatment-refractory infant-onset inflammatory bowel disease with the IL1-receptor antagonist anakinra. Both patients had marked clinical, endoscopic, and histologic responses after 4-7 weeks. This treatment served as successful bridge to allogeneic hematopoietic stem cell transplantation in 1 patient. Our findings indicate that loss of IL10 signaling leads to intestinal inflammation, at least in part, through increased production of IL1 by innate immune cells, leading to activation of CD4+ T cells. Agents that block IL1 signaling might be used to treat patients with inflammatory bowel disease resulting from IL10R deficiency.


Assuntos
Colite/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Receptores de Interleucina-10/genética , Trifosfato de Adenosina/farmacologia , Adulto , Animais , Antirreumáticos/uso terapêutico , Linfócitos T CD4-Positivos , Caspase 8/metabolismo , Células Cultivadas , Pré-Escolar , Colite/genética , Colite/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Imunidade Inata , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interferon gama/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-10/farmacologia , Subunidade alfa de Receptor de Interleucina-10/genética , Interleucina-17/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Camundongos Knockout , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de Interleucina-10/deficiência , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
9.
Blood ; 125(25): 3886-95, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25833964

RESUMO

Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific "humanized" mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics.


Assuntos
Autoimunidade/imunologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/imunologia , Síndromes de Imunodeficiência/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo
10.
medRxiv ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38699375

RESUMO

Background: Understanding antibody responses to SARS-CoV-2 vaccination is crucial for refining COVID-19 immunization strategies. Generation of mucosal immune responses, including mucosal IgA, could be of potential benefit to vaccine efficacy, yet limited evidence exists regarding the production of mucosal antibodies following the administration of current mRNA vaccines to young children. Methods: We measured the levels of antibodies against SARS-CoV-2 from a cohort of children under 5 years of age undergoing SARS-CoV-2 mRNA vaccination (serially collected, matched serum and saliva samples, N=116) or on convenience samples of children under 5 years of age presenting to a pediatric emergency department (nasal swabs, N=103). Further, we assessed salivary and nasal samples for the ability to induce SARS-CoV-2 spike-mediated neutrophil extracellular traps (NET) formation. Results: Longitudinal analysis of post-vaccine responses in saliva revealed the induction of SARS-CoV-2 specific IgG but not IgA. Similarly, SARS-CoV-2 specific IgA was only observed in nasal samples obtained from previously infected children with or without vaccination, but not in vaccinated children without a history of infection. In addition, oronasopharyngeal samples obtained from children with prior infection were able to trigger enhanced spike-mediated NET formation, and IgA played a key role in driving this process. Conclusions: Despite the induction of specific IgG in the oronasal mucosa, current intramuscular vaccines have limited ability to generate mucosal IgA in young children. These results confirm the independence of mucosal IgA responses from systemic humoral responses following mRNA vaccination and suggest potential future vaccination strategies for enhancing mucosal protection in this young age group.

11.
Cell Mol Gastroenterol Hepatol ; 18(2): 101350, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704148

RESUMO

BACKGROUND & AIMS: Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS: We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS: B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS: B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.

12.
Nat Commun ; 15(1): 905, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291080

RESUMO

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses are compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Lactente , Humanos , Pré-Escolar , Vacina de mRNA-1273 contra 2019-nCoV , COVID-19/prevenção & controle , Vacinação , Imunidade Humoral , RNA Mensageiro , Anticorpos Antivirais
13.
Microbiol Spectr ; 12(6): e0351623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687064

RESUMO

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.


Assuntos
COVID-19 , Coinfecção , Células Epiteliais , Interferon Tipo I , Interleucina-17 , SARS-CoV-2 , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , COVID-19/imunologia , Coinfecção/imunologia , Coinfecção/microbiologia , Coinfecção/virologia , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Masculino , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Feminino , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Adulto , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Idoso , Nasofaringe/microbiologia , Candidíase/imunologia , Candidíase/microbiologia , Micoses/imunologia
14.
Gastroenterology ; 143(3): 719-729.e2, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22710191

RESUMO

BACKGROUND & AIMS: Immunodeficiency and autoimmune sequelae, including colitis, develop in patients and mice deficient in Wiskott-Aldrich syndrome protein (WASP), a hematopoietic cell-specific intracellular signaling molecule that regulates the actin cytoskeleton. Development of colitis in WASP-deficient mice requires lymphocytes; transfer of T cells is sufficient to induce colitis in immunodeficient mice. We investigated the interactions between innate and adaptive immune cells in mucosal regulation during development of T cell-mediated colitis in mice with WASP-deficient cells of the innate immune system. METHODS: Naïve and/or regulatory CD4(+) T cells were transferred from 129 SvEv mice into RAG-2-deficient (RAG-2 KO) mice or mice lacking WASP and RAG-2 (WRDKO). Animals were observed for the development of colitis; effector and regulatory functions of innate immune and T cells were analyzed with in vivo and in vitro assays. RESULTS: Transfer of unfractionated CD4(+) T cells induced severe colitis in WRDKO, but not RAG-2 KO, mice. Naïve wild-type T cells had higher levels of effector activity and regulatory T cells had reduced suppressive function when transferred into WRDKO mice compared with RAG-2 KO mice. Regulatory T-cell proliferation, generation, and maintenance of FoxP3 expression were reduced in WRDKO recipients and associated with reduced numbers of CD103(+) tolerogenic dendritic cells and levels of interleukin-10. Administration of interleukin-10 prevented induction of colitis following transfer of T cells into WRDKO mice. CONCLUSIONS: Defective interactions between WASP-deficient innate immune cells and normal T cells disrupt mucosal regulation, potentially by altering the functions of tolerogenic dendritic cells, production of interleukin-10, and homeostasis of regulatory T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Colite/imunologia , Colo/imunologia , Imunidade Inata , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Transferência Adotiva , Animais , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Proliferação de Células , Células Cultivadas , Colite/genética , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Tolerância Imunológica , Cadeias alfa de Integrinas/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ativação Linfocitária , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Fatores de Tempo , Quimeras de Transplante , Proteína da Síndrome de Wiskott-Aldrich/genética
15.
J Immunol ; 186(4): 1989-96, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21217011

RESUMO

Although NF-κB1 p50/p105 has critical roles in immunity, the mechanism by which NF-κB1 regulates inflammatory responses is unclear. In this study, we analyzed the gene expression profile of LPS-stimulated Nfkb1(-/-) macrophages that lack both p50 and p105. Deficiency of p50/p105 selectively increased the expression of IFN-responsive genes, which correlated with increased IFN-ß expression and STAT1 phosphorylation. IFN Ab-blocking experiments indicated that increased STAT1 phosphorylation and expression of IFN-responsive genes observed in the absence of p50/p105 depended upon autocrine IFN-ß production. Markedly higher serum levels of IFN-ß were observed in Nfkb1(-/-) mice than in wild-type mice following LPS injection, demonstrating that Nfkb1 inhibits IFN-ß production under physiological conditions. TPL-2, a mitogen-activated protein kinase kinase kinase stabilized by association with the C-terminal ankyrin repeat domain of p105, negatively regulates LPS-induced IFN-ß production by macrophages via activation of ERK MAPK. Retroviral expression of TPL-2 in Nfkb1(-/-) macrophages, which are deficient in endogenous TPL-2, reduced LPS-induced IFN-ß secretion. Expression of the C-terminal ankyrin repeat domain of p105 in Nfkb1(-/-) macrophages, which rescued LPS activation of ERK, also inhibited IFN-ß expression. These data indicate that p50/p105 negatively regulates LPS-induced IFN signaling in macrophages by stabilizing TPL-2, thereby facilitating activation of ERK.


Assuntos
Interferon beta/antagonistas & inibidores , MAP Quinase Quinase Quinases/fisiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Subunidade p50 de NF-kappa B/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Toll-Like/fisiologia , Animais , Células da Medula Óssea/enzimologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Perfilação da Expressão Gênica , Interferon beta/biossíntese , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Subunidade p50 de NF-kappa B/deficiência , Subunidade p50 de NF-kappa B/genética , Receptores Toll-Like/antagonistas & inibidores
16.
Mucosal Immunol ; 16(3): 233-249, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868479

RESUMO

The loss of IL-10R function leads to severe early onset colitis and, in murine models, is associated with the accumulation of immature inflammatory colonic macrophages. We have shown that IL-10R-deficient colonic macrophages exhibit increased STAT1-dependent gene expression, suggesting that IL-10R-mediated inhibition of STAT1 signaling in newly recruited colonic macrophages might interfere with the development of an inflammatory phenotype. Indeed, STAT1-/- mice exhibit defects in colonic macrophage accumulation after Helicobacter hepaticus infection and IL-10R blockade, and this was phenocopied in mice lacking IFNγR, an inducer of STAT1 activation. Radiation chimeras demonstrated that reduced accumulation of STAT1-deficient macrophages was based on a cell-intrinsic defect. Unexpectedly, mixed radiation chimeras generated with both wild-type and IL-10R-deficient bone marrow indicated that rather than directly interfering with STAT1 function, IL-10R inhibits the generation of cell extrinsic signals that promote the accumulation of immature macrophages. These results define the essential mechanisms controlling the inflammatory macrophage accumulation in inflammatory bowel diseases.


Assuntos
Colite , Camundongos , Animais , Colite/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Res Sq ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066325

RESUMO

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we used a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 µg). Responses were compared with vaccinated adults (100 µg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicited a stronger functional antibody response than adults, including against variant of concerns (VOCs), without report of side effects. Moreover, mRNA vaccination was associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.

18.
medRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745424

RESUMO

Background: Many questions remain unanswered regarding the implication of lipid metabolites in severe SARS-CoV-2 infections. By re-analyzed sequencing data from the nasopharynx of a previously published cohort, we found that alox genes, involved in eicosanoid synthesis, were up-regulated in high WHO score patients, especially in goblet cells. Herein, we aimed to further understand the roles played by eicosanoids during severe SARS-CoV-2 infection. Methods and findings: We performed a total fatty acid panel on plasma and bulk RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) collected from 10 infected and 10 uninfected patients. Univariate comparison of lipid metabolites revealed that lipid metabolites were increased in SARS-CoV-2 patients including the lipid mediators Arachidonic Acid (AA) and Eicosapentaenoic Acid (EPA). AA, EPA and the fatty acids Docosahexaenoic acid (DHA) and Docosapentaenoic acid (DPA), were positively correlated to WHO disease severity score. Transcriptomic analysis demonstrated that COVID-19 patients can be segregated based on WHO scores. Ontology, KEGG and Reactome analysis identified pathways enriched for genes related to innate immunity, interactions between lymphoid and nonlymphoid cells, interleukin signaling and, cell cycling pathways. Conclusions: Our study offers an association between nasopharynx mucosa eicosanoid genes expression, specific serum inflammatory lipids and, subsequent DNA damage pathways activation in PBMCs to severity of COVID-19 infection.

19.
Sci Rep ; 12(1): 452, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013585

RESUMO

Macrophages are a heterogeneous population of mononuclear phagocytes abundantly distributed throughout the intestinal compartments that adapt to microenvironmental specific cues. In adult mice, the majority of intestinal macrophages exhibit a mature phenotype and are derived from blood monocytes. In the steady-state, replenishment of these cells is reduced in the absence of the chemokine receptor CCR2. Within the intestine of mice with colitis, there is a marked increase in the accumulation of immature macrophages that demonstrate an inflammatory phenotype. Here, we asked whether CCR2 is necessary for the development of colitis in mice lacking the receptor for IL10. We compared the development of intestinal inflammation in mice lacking IL10RA or both IL10RA and CCR2. The absence of CCR2 interfered with the accumulation of immature macrophages in IL10R-deficient mice, including a novel population of rounded submucosal Iba1+ cells, and reduced the severity of colitis in these mice. In contrast, the absence of CCR2 did not reduce the augmented inflammatory gene expression observed in mature intestinal macrophages isolated from mice lacking IL10RA. These data suggest that both newly recruited CCR2-dependent immature macrophages and CCR2-independent residual mature macrophages contribute to the development of intestinal inflammation observed in IL10R-deficient mice.


Assuntos
Colite/imunologia , Subunidade alfa de Receptor de Interleucina-10/imunologia , Intestinos/imunologia , Monócitos/imunologia , Receptores CCR2/imunologia , Animais , Colite/genética , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-10/genética , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Receptores CCR2/genética
20.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404389

RESUMO

Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.


Assuntos
Células Endoteliais , Monócitos , Receptores CCR2 , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Ligantes , Macrófagos , Receptores CCR2/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA