Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(12): e1010112, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941962

RESUMO

Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Peróxido de Hidrogênio , Células Receptoras Sensoriais/fisiologia , Animais , Bactérias/metabolismo , Locomoção/fisiologia , Percepção/fisiologia
2.
J Vis Exp ; (193)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067276

RESUMO

The composition of the gut microbiome can have a dramatic impact on host physiology throughout the development and the life of the animal. Measuring compositional changes in the microbiome is crucial in identifying the functional relationships between these physiological changes. Caenorhabditis elegans has emerged as a powerful host system to examine the molecular drivers of host-microbiome interactions. With its transparent body plan and fluorescent-tagged natural microbes, the relative levels of microbes within the gut microbiome of an individual C. elegans animal can be easily quantified using a large particle sorter. Here we describe the procedures for the experimental setup of a microbiome, collection, and analysis of C. elegans populations in the desired life stage, operation, and maintenance of the sorter, and statistical analyses of the resulting datasets. We also discuss considerations for optimizing sorter settings based on the microbes of interest, the development of effective gating strategies for C. elegans life stages, and how to utilize sorter capabilities to enrich animal populations based on gut microbiome composition. Examples of potential applications will be presented as part of the protocol, including the potential for scalability to high-throughput applications.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Caenorhabditis elegans
3.
Curr Biol ; 31(12): 2603-2618.e9, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34048707

RESUMO

Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.


Assuntos
Caenorhabditis elegans/microbiologia , Variação Genética , Microbiota/genética , Microbiota/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Filogenia , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
G3 (Bethesda) ; 10(9): 3071-3085, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32601060

RESUMO

Identifying the mechanisms behind neuronal fate specification are key to understanding normal neural development in addition to neurodevelopmental disorders such as autism and schizophrenia. In vivo cell fate specification is difficult to study in vertebrates. However, the nematode Caenorhabditis elegans, with its invariant cell lineage and simple nervous system of 302 neurons, is an ideal organism to explore the earliest stages of neural development. We used a comparative transcriptome approach to examine the role of cnd-1/NeuroD1 in C. elegans nervous system development and function. This basic helix-loop-helix transcription factor is deeply conserved across phyla and plays a crucial role in cell fate specification in both the vertebrate nervous system and pancreas. We find that cnd-1 controls expression of ceh-5, a Vax2-like homeobox class transcription factor, in the RME head motorneurons and PVQ tail interneurons. We also show that cnd-1 functions redundantly with the Hox gene ceh-13/labial in defining the fate of DD1 and DD2 embryonic ventral nerve cord motorneurons. These data highlight the utility of comparative transcriptomes for identifying transcription factor targets and understanding gene regulatory networks.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA