RESUMO
Staphylococcus aureus is a unique challenge for the healthcare system because it can form biofilms, is resistant to the host's immune system, and is resistant to numerous antimicrobial therapies. The aim of this study was to investigate the effect of poly (lactic-co-glycolic acid) (PLGA) polymer nanoparticles loaded with vancomycin and conjugated with lysostaphin (PLGA-VAN-LYS) on inhibiting S. aureus biofilm formation. Nano drug carriers were produced using the double emulsion evaporation process. we examined the physicochemical characteristics of the nanoparticles, including particle size, polydispersity index (PDI), zeta potential, drug loading (DL), entrapment efficiency (EE), Lysostaphin conjugation efficiency (LCE), and shape. The effect of the nano drug carriers on S. aureus strains was evaluated by determining the minimum inhibitory concentration (MIC), conducting biofilm formation inhibition studies, and performing agar well diffusion tests. The average size, PDI, zeta potential, DL, EE, and LCE of PLGA-VAN-LYS were 320.5 ± 35 nm, 0.270 ± 0.012, -19.5 ± 1.3 mV, 16.75 ± 2.5%, 94.62 ± 2.6%, and 37% respectively. Both the agar well diffusion and MIC tests did not show a distinction between vancomycin and the nano drug carriers after 72 h. However, the results of the biofilm analysis demonstrated that the nano drug carrier had a stronger inhibitory effect on biofilm formation compared to the free drug. The use of this technology for treating hospital infections caused by the Staphylococcus bacteria may have favorable effects on staphylococcal infections, considering the efficacy of the nano medicine carrier developed in this study.
Assuntos
Infecções Estafilocócicas , Vancomicina , Humanos , Vancomicina/farmacologia , Glicóis , Staphylococcus aureus , Ágar , Lisostafina , Polímeros , BiofilmesRESUMO
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with shorter telomere length (TL), a marker of ageing at cellular level. However, the available evidence on this association among children is still scarce. We therefore aimed to assess, the relationship between urinary 1-hydroxipayrene (1-OHP), a marker of exposure to PAHs, and relative leukocyte TL (LTL) in children at preschool age. Our study was based on 200 children enrolled from 27 randomly-selected kindergartens in the city of Sabzevar, Iran (2017). 1-OHP levels in the participants' urine samples were measured using solid phase extraction (SPE) method and high-performance liquid chromatography (HPLC). Moreover, real-time PCR was used to measure the LTL in the participants' blood samples. Linear mixed effects models, controlled for relevant covariates, were applied to investigate the association of 1-OHP concentration and LTL. The median (interquartile range (IQR)) of relative LTL and urinary 1-OHP were 0.83 (0.7) and 257 (375.5) ng/L, respectively. In the fully adjusted model, an IQR increase in urinary 1-OHP was related to -0.05 (95% confidence interval (CI): 0.09, -0.01, P-value = 0.02) decrease in relative LTL. This association was similar among boys and girls; however, we observed indications for a stronger association for those children whose parents had university education. Our study suggested an inverse relationship between urinary 1-OHP and LTL in children at preschool age. However, further longitudinal research with repeated measures of PAHs and LTL are needed to confirm these findings.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Pré-Escolar , Estudos Transversais , Exposição Ambiental/análise , Feminino , Humanos , Irã (Geográfico) , Masculino , Hidrocarbonetos Policíclicos Aromáticos/análise , TelômeroRESUMO
This study was performed to determine the effects of pectin derived from orange peel (PDOP) on growth performance, antioxidant enzyme activity and serum and skin mucus immune response of common carp (Cyprinus carpio). Common Carp (16.94 ± 0.03 g) were distributed into 12 tanks representing four treatments repeated in triplicates. Four diets were prepared to contain four levels of PDOP as follows: 0 (control), 0.5, 1, and 2% PDOP. Growth and immunological parameters as skin mucus lysozyme activity (SMLA) and total immunoglobulin (SMTIg), serum total immunoglobulin (STIg), serum peroxidase activities (SPA), Catalyse activity (CAT), DPPH radical scavenging activity, specific growth rate (SGR), weight gain (WG), final weight (FW), and feed conversion ratio (FCR) were assessed. Fish fed diets supplemented with PDOP showed an improvement of SGR, WG, FW, and FCR (P < 0.05). In terms of skin mucus immunological parameters, dietary inclusion of pectin significantly (P < 0.05) increased SMTIg. Likewise, carps fed either 1 or 2% PDOP showed notable enhancement of SMLA. In the case of serum immune parameters and antioxidant defence, carps in 1% PDOP treatment showed significantly (P < 0.05) higher SPA and CAT compared to fish fed either control diet or 0.5% OPDP. Additionally, no significant change (P > 0.05) was found in SPA and CAT of fish fed either 1% PDOP or 2% PDOP. Also, no significant (P > 0.05) difference was noticed between treated groups and control in the case of STIg. Furthermore, no significant differences were observed in DPPH radical activity among treatments (P > 0.05). Overall, these results suggested that inclusion of PDOP in common carp diet can beneficially affect growth and immune response.
Assuntos
Antioxidantes/metabolismo , Sangue/imunologia , Carpas/imunologia , Citrus sinensis/química , Imunidade nas Mucosas/efeitos dos fármacos , Pectinas/metabolismo , Pele/imunologia , Ração Animal/análise , Animais , Carpas/sangue , Carpas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Frutas/química , Pectinas/administração & dosagem , Pectinas/química , Distribuição AleatóriaRESUMO
BACKGROUND: Brucellosis is one of the most important infection of diseases. Due to its large period of treatment and survival ability of bacteria inside the macrophages, relapse of this disease is the main challenge, especially, after the treatment. OBJECTIVE: The current study was carried out to evaluate the antibacterial effect of solid lipid nanoparticles loaded with doxycycline on the Brucella melitensis in in vivo conditions. METHODS: The double emulsion synthesized doxycycline-encapsulated solid lipid nanoparticles (DOX-SLN) was characterized using DLS and FE-SEM. The efficacy of the DOX-SLN on the acute and chronic Wistar rat infected brucellosis was investigated. The pathological assessments were made on the spleen and liver in the treated rates. RESULTS: The in vivo experimental results demonstrated that the treated rats with DOX-SLN had significantly decreased the B. melitensis CFUs in their spleen and liver compared to that of the treated rates with free doxycycline and untreated ones. The pathologic results indicate that the improvement trend of spleen and liver tissues in rats treated by DOX-SLN was satisfactory. CONCLUSION: According to in vivo results, the DOX-SLN has better effects on the treatment of chronic brucellosis. Therefore, DOX-SLN is recommended to treat the brucellosis and avoid its relapse.
Assuntos
Brucelose , Doxiciclina , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Brucella melitensis/efeitos dos fármacos , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Brucelose/patologia , Doença Crônica , Doxiciclina/administração & dosagem , Doxiciclina/farmacologia , Lipídeos , Fígado/microbiologia , Fígado/patologia , Masculino , Ratos , Ratos Wistar , Recidiva , Baço/microbiologia , Baço/patologiaRESUMO
PURPOSE: Spinal cord injury (SCI) results in accelerated bone mineral density (BMD) loss and disorganization of trabecular bone architecture. The mechanisms underlying post-SCI osteoporosis are complex and different from other types of osteoporosis. Findings of studies investigating efficacy of pharmacological or rehabilitative interventions in SCI-related osteoporosis are controversial. The aim of this study was to review the literature pertaining to prevention and evidence-based treatments of SCI-related osteoporosis. METHODS: In this systematic review, MEDLINE, EMBASE, PubMed, and the Cochrane Library were used to identify papers from 1946 to December 31, 2015. The search strategy involved the following keywords: spinal cord injury, osteoporosis, and bone loss. RESULTS: Finally, 56 studies were included according to the inclusion criteria. Only 16 randomized controlled trials (involving 368 patients) were found. We found following evidences for effectiveness of bisphosphonates in prevention of BMD loss in acute SCI: very low-quality evidence for clodronate and etidronate, low-quality evidence for alendronate, and moderate-quality evidence for zoledronic acid. Low-quality evidence showed no effectiveness for tiludronate. In chronic SCI cases, we found low-quality evidence for effectiveness of vitamin D3 analogs combined with 1-alpha vitamin D2. However, low-quality inconsistent evidence exists for alendronate. For non-pharmacologic interventions, very low-quality evidence exists for effectiveness of standing with or without treadmill walking in acute SCI. Other low-quality evidences indicated that electrical stimulation, tilt-table standing, and ultrasound provide no significant effects. Very low-quality evidence did not show any benefit for low-intensity (3 days per week) cycling with functional electrical stimulator in chronic SCI. CONCLUSIONS: No recommendations can be made from this review, regarding overall low quality of evidence as a result of high risk of bias, low sample size in most of the studies, and notable heterogeneity in type of intervention, outcome measurement, and duration of treatment. Therefore, future high-quality RCT studies with higher sample sizes and more homogeneity are strongly recommended to provide high-quality evidence and make applicable recommendations for prevention and treatment of SCI-related bone loss.
Assuntos
Densidade Óssea/efeitos dos fármacos , Osteoporose/prevenção & controle , Traumatismos da Medula Espinal/complicações , Densidade Óssea/fisiologia , Conservadores da Densidade Óssea/uso terapêutico , Estimulação Elétrica/métodos , Feminino , Humanos , Masculino , Osteoporose/etiologia , Osteoporose/terapia , Vitamina D/uso terapêuticoRESUMO
Carbapenem-resistant (CR) Gram-negative bacteria have become a significant public health problem in the last decade. In recent years, the prevalence of CR bacteria has increased. The resistance to carbapenems could result from different mechanisms such as loss of porin, penicillin-binding protein alteration, carbapenemase, efflux pump, and biofilm community. Additionally, genetic variations like insertion, deletion, mutation, and post-transcriptional modification of corresponding coding genes could decrease the susceptibility of bacteria to carbapenems. In this regard, scientists are looking for new approaches to inhibit CR bacteria. Using bacteriophages, natural products, nanoparticles, disulfiram, N-acetylcysteine, and antimicrobial peptides showed promising inhibitory effects against CR bacteria. Additionally, the mentioned compounds could destroy the biofilm community of CR bacteria. Using them in combination with conventional antibiotics increases the efficacy of antibiotics, decreases their dosage and toxicity, and resensitizes CR bacteria to antibiotics. Therefore, in the present review article, we have discussed different aspects of non-antibiotic approaches for managing and inhibiting the CR bacteria and various methods and procedures used as an alternative for carbapenems against these bacteria.
RESUMO
Nano pharmacology is considered an effective, safe, and applicable approach for drug delivery applications. Solid lipid nanoparticle (SLNs) colloids contain biocompatible lipids which are capable of encapsulating and maintaining hydrophilic or hydrophobic drugs in the solid matrix followed by releasing the drug in a sustained manner in the target site. SLNs have more promising potential than other drug delivery systems for various purposes. Nowadays, the SLNs are used as a carrier for antibiotics, chemotherapeutic drugs, nucleic acids, herbal compounds, etc. The SLNs have been widely applied in biomedicine because of their non-toxicity, biocompatibility, and simple production procedures. In this review, the complications related to the optimization, preparation process, routes of transplantation, uptake and delivery system, and release of the loaded drug along with the advantages of SLNs as therapeutic agents were discussed.
Assuntos
Infecções Bacterianas , Lipídeos , Lipossomos , Nanopartículas , Humanos , Nanopartículas/química , Lipídeos/química , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/químicaRESUMO
Brucellosis poses a significant challenge in the medical field as a systemic infection with a propensity for relapse. This study presented a novel approach to brucellosis treatment, enhancing the efficacy of doxycycline and rifampicin through the use of poly (lactic-co-glycolic) acid coupled with cadmium-telluride quantum dots (Dox-Rif-PLGA@CdTe). The double emulsion solvent evaporation method was employed to prepare Dox-Rif-PLGA@CdTe. The study scrutinized the physicochemical attributes of these nanoparticles. The impact of antibiotic-loaded nanoparticles on Brucella melitensis was evaluated through well diffusion, minimum inhibitory concentration (MIC), and cell culture. The chemical analysis results demonstrated a possibility of chemical reactions occurring among the constituents of nanoparticles. Assessments using the well diffusion and MIC methods indicated that the impact of free drugs and nanoparticles on bacteria was equivalent. However, the drug-loaded nanoparticles significantly decreased the colony-forming units (CFUs) within the cell lines compared to free drugs. In conclusion, the synthesis of nanoparticles adhered to environmentally friendly practices and demonstrated safety. The sustained drug release over 100 h facilitated drug accumulation at the bacterial site, resulting in a heightened therapeutic effect on B. melitensis and improved outcomes in brucellosis treatment. The application of these synthesized nanodrugs exhibited promising therapeutic potential.
RESUMO
The association of CETP Taq1B polymorphism with some metabolic traits is still controversial. The interaction of adherence to dietary indices with this polymorphism on the severity of coronary artery stenosis and serum lipid parameters needs to be investigated. This study aimed to test this hypothesis. This cross-sectional study included 453 patients who were referred from Afshar Hospital of Yazd and undergoing coronary angiography from 2020 to 2021. Dietary intake was evaluated by a 178-item validated and reliable dietary questionnaire. Dietary indices such as dietary antioxidant index (DAI), dietary antioxidant quality score (DAQS), and dietary phytochemical index (DPI) are determined according to dietary guidelines. The Taq1B variant was genotyped by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP). Two-way ANOVA was used to test the interaction between Taq1B polymorphism and dietary indices. The results of the frequency analysis of Taq1B genotypes showed that 10.4% were B1B1, 72.4% B1B2, and 17.2% B2B2. No significant interaction was found between the Taq1B variant with high adherence to DAQS, DAI, and DPI on total cholesterol (TC), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), triglyceride (TG) levels, and Gensini score (GS) and Syntax score (SS). In high-adherence dietary indices, lipid profile and coronary artery stenosis scores did not differ significantly in Taq1B genotypes. Due to the insignificant results in this research, further studies are needed to investigate the role of Taq1B SNP in modulating dyslipidemia and the severity of the CAD in interaction with dietary indices.
RESUMO
Bacterial infection of the wound could potentially cause serious complications and an enormous medical and financial cost to the rapid emergence of drug-resistant bacteria. Nanomaterials are an emerging technology, that has been researched as possible antimicrobial nanomaterials for the inhibition of wound infection and enhancement of wound healing. Graphene is 2-dimensional (2D) sheet of sp2 carbon atoms in a honeycomb structure. It has superior properties, strength, conductivity, antimicrobial, and molecular carrier abilities. Graphene and its derivatives, Graphene oxide (GO) and reduced GO (rGO), have antibacterial activity and could damage bacterial morphology and lead to the leakage of intracellular substances. Besides, for wound infection management, Graphene-platforms could be functionalized by different antibacterial agents such as metal-nanoparticles, natural compounds, and antibiotics. The Graphene structure can absorb near-infrared wavelengths, allowing it to be used as antimicrobial photodynamic therapy. Therefore, Graphene-based material could be used to inhibit pathogens that cause serious skin infections and destroy their biofilm community, which is one of the biggest challenges in treating wound infection. Due to its agglomerated structure, GO hydrogel could entrap and stack the bacteria; thus, it prevents their initial attachment and biofilm formation. The sharp edges of GO could destroy the extracellular polymeric substance surrounding the biofilm and ruin the biofilm biomass structure. As well as, Chitosan and different natural and synthetic polymers such as collagen and polyvinyl alcohol (PVA) also have attracted a great deal of attention for use with GO as wound dressing material. To this end, multi-functional polymers based on Graphene and blends of synthetic and natural polymers can be considered valid non-antibiotic compounds useful against wound infection and improvement of wound healing. Finally, the global wound care market size was valued at USD 20.8 billion in 2022 and is expected to expand at a compound annual growth rate (CAGR) of 5.4% from 2022 to 2027 (USD 27.2 billion). This will encourage academic as well as pharmaceutical and medical device industries to investigate any new materials such as graphene and its derivatives for the treatment of wound healing.
Assuntos
Anti-Infecciosos , Quitosana , Grafite , Infecção dos Ferimentos , Humanos , Grafite/farmacologia , Grafite/química , Matriz Extracelular de Substâncias Poliméricas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Anti-Infecciosos/farmacologia , Cicatrização , Bactérias , Quitosana/química , Infecção dos Ferimentos/tratamento farmacológicoRESUMO
Background: The aim of this study was to investigate the frequency and relationship between plasmid-mediated quinolone resistance genes and OqxAB pump genes, as well as the genetic linkage in K. pneumoniae strains isolated from Hamadan hospitals in the west of Iran. Materials and Methods: In this study, 100 K. pneumoniae clinical strains were isolated from clinical samples of inpatients at Hamadan Hospital in 2021. The antimicrobial susceptibility testing was performed using the disk diffusion method. The frequencies of genes encoding OqxAB efflux pumps and qnr were investigated by PCR. Molecular typing of qnr-positive K. pneumoniae isolates was assessed by ERIC-PCR. Results: Antibiotic susceptibility testing showed high resistance (>80%) to fluoroquinolones. The gene encoding the OqxAB efflux pump was detected in more than 90% of K. pneumomiae strains. All K. pneumoniae isolates were negative for qnrA, and 20% and 9% of the isolates were positive for qnrB and qnrS, respectively. The genes encoding oqxA and oqxB were detected in 96% of qnr-positive strains. A qnrB + /qnrS + profile was observed in 16% of qnr-positive K. pneumoniae strains. Ciprofloxacin MIC ≥ 256 µg/ml was detected in 20% of qnr-positive strains. Genetic association analysis by ERIC-PCR revealed genetic diversity among 25 different qnr-positive strains of K. pneumonia. Conclusion: However, no significant correlation was found between the qnr and the OqxAB efflux pump genes in this study. The high rate of fluoroquinolone resistance and determinants of antibiotic resistance among diverse K. pneumoniae strains increase the risk of fluoroquinolone-resistance transmission by K. pneumoniae strains in hospitals.
RESUMO
Brucellosis is considered one of the most important infectious diseases affecting any tissue and organ in the human body. Due to the intracellular pathogenesis of Brucella species, the use of conventional antibiotics for managing chronic brucellosis has several limitations. Therefore, the study focused on the use of solid lipid nanoparticles (SLN) to deliver streptomycin (STR) for intracellular infection, with or without the combination of hydroxychloroquine (HCQ) to evaluate if there might be a boost in the antibiotic effect when using the STR or STR-NPs alone. We used the double emulsion technique to synthesize Nano drug carriers; afterward, the physicochemical characteristics of synthesized Nano drug carriers were determined. The in vitro antibacterial activity of free drugs and Nano drug carriers were evaluated using well diffusion, broth microdilution assays (BMD), and murine macrophage-like cells cell line J774A.1. Additionally, acute and chronic phases of brucellosis were inducted into Wistar rats, and healing capacity of Nano drug carriers on liver and spleen tissues was compared with free drugs. The zeta potential of nanoparticles, means of size, Polydispersity Index (PDI), drugs loading, and encapsulation efficiency were 15.2 mV, 312.5 ± 26 nm, 0.433 ± 0.09, 16.6% and 89.5%, respectively. Well diffusion and BMD methods did not show a significantly differ between free drugs and nano drug carriers. However, the Nano drug carriers remarkably decreased the number of bacteria in the cell line compared to the free drugs. STR/HCQ-SLN enhanced the healing processes of the liver and spleen after brucellosis induction. STR/HCQ-SLN showed better inhibitory effects against the chronic phase of B. abortus infection in comparison to the STR-SLN, but this difference was not statistically significant. Using nanoplatforms to enhance conventional anti-brucellosis agents is promising, green and safe. Due to the continuous release of drugs, drugs increase their accumulation at the site of infection, causing a more significant effect on the chronic and acute phases of brucellosis.
Assuntos
Brucelose , Nanopartículas , Pontos Quânticos , Ratos , Camundongos , Humanos , Animais , Brucella abortus , Estreptomicina/farmacologia , Estreptomicina/uso terapêutico , Hidroxicloroquina/farmacologia , Ratos Wistar , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Brucelose/patologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Portadores de Fármacos/uso terapêuticoRESUMO
Background: During the Coronavirus Pandemic, the use of masks has increased significantly. The lack of control on hygiene protocols and the need to use PPE properly increases the spread of bacterial infection. The purpose of this study was to investigate the degree of contamination and frequency of bacterial species isolated from surgical and N95 masks used by hospital personnel. Methods: A total number of 175 masks were collected from staff working in Sina hospital (Hamadan province, Iran) during the first six months of 2022. The bacterial contamination of masks were evaluated and identified using biochemical kits. Antimicrobial susceptibility testing of the isolates were done using Kirby-Bauer methods and MIC were assessed for each isolate against different disinfectants (Sodium hypochlorite 5%, Hydrogen Peroxide 3%, Ethanol 70% and Deconex). Results: Of 175 masks, 471 bacterial isolates were detected including 9 species. The most prevalent strain were Coagulase negative Staphylococcus (28%) followed by Acinetobacter (20.8%) and Pseudomonas (13.8%), while, Klebsiealla and Enterococcus were the least frequent species with the rate of 3.8% and 1.2%, respectively. The results of MIC methods indicated that all 471 strains were resistant to ehtanol70% and sensitive to hydrogen peroxide 3%. Furthermore, the mean average of Deconex inhibitory effect is lower than Sodium hypochlorite 5%. Conclusions: According to the results of this study, there was a high prevalence of CoNS, Acinetobacter and Pseudomonas in hospital with a high resistance pattern against antibiotics especially Ampicillin and disinfectants.
RESUMO
Background: Cockroaches are one of the most important carriers of pathogenic microorganisms. Therefore, the presence of cockroaches in public places, especially in hospitals, homes, and restaurants, is dangerous, and threatens the health of society, people, and the environment. The aim of this study was evaluation of bacterial contamination of cockroaches and the sensitivity of these bacteria to various antibiotics, captured from Khorramabad City, Iran. Methods: This descriptive cross-sectional study was performed on 150 cockroaches collected from hospital environments, homes, and restaurants in Khorramabad. The outer surface of the cockroaches was washed with physiological saline. The suspension was centrifuged for 5 minutes at 2000rpm. Isolation and identification of bacteria was performed using phenotypic methods. Antibiotic susceptibility testing was performed by disk diffusion method according to Clinical and Laboratory Standard Institute (CLSI) guideline. Results: A total of 100 American cockroaches (66.66%), 28 B. germanica (18.66%) and 22 Blatta orientalis (14.66%) were identified. In total, 97.33% of the collected cockroaches were infected with bacteria. The most bacterial infection of the cockroaches was Escherichia coli, coagulase-negative Staphylococci and Bacillus respectively. The overall results of the antibiogram test showed that the identified bacteria were resistant to cephalothin, ampicillin, cefotaxime, and kanamycin antibiotics, semi-sensitive to ciprofloxacin and sensitive to tetracycline, gentamicin, nitrofurantoin, Trimethoprim/sulfamethoxazole, and Chloramphenicol. Conclusion: Infection of cockroaches with pathogenic bacterial agents in hospital, residential, and restaurant environments, as well as the observation of bacterial resistance to some common antibiotics is worrying.
RESUMO
Can brucellosis-related biochemical and immunological parameters be used as diagnostic and treatment indicators? The goal of this project was to look at biochemical parameters, trace elements, and inflammatory factors in the acute and chronic stages of brucellosis after treatment with streptomycin and hydroxychloroquine-loaded solid lipid nanoparticles (STR-HCQ-SLN). The double emulsion method was used for the synthesis of nanoparticles. Serum levels of trace elements, vitamin D, CRP, and biochemical parameters were measured in rats involved in brucellosis. The therapeutic effect of STR-HCQ-SLN was compared with that of free drugs. In both healthy and infected rats, serum concentrations of copper, zinc, iron, magnesium, potassium, and biochemical parameters of the liver were significantly different. By altering the serum levels of the aforementioned factors, treatment with STR-HCQ-SLN had a positive therapeutic effect on chronic brucellosis. Vitamin D levels declined (46.4%) and CRP levels rose (from 7.5 mg to less than 1 mg) throughout the acute and chronic stages of brucellosis. This study showed that by comparing the biochemical parameters and the levels of trace elements in the serum of healthy and diseased mice in the acute and chronic stages of brucellosis, it is possible to get help from other routine methods for diagnosis.
Assuntos
Brucelose , Nanopartículas , Oligoelementos , Animais , Camundongos , Ratos , Estreptomicina , Hidroxicloroquina/uso terapêutico , Brucelose/tratamento farmacológico , Animais de Laboratório , Vitaminas , Vitamina DRESUMO
Coronary artery disease (CAD) is one of the most important cardiovascular diseases. Lifestyle and genetic factors play important roles in the development of CAD. The aim of the study is to examine the interaction of dietary patterns and genes on the likelihood of abnormal lipid profile and coronary artery stenosis in Iranians undergoing coronary angiography. This cross-sectional study was performed on 440 patients who underwent coronary angiography. The factor analysis method was used to extract dietary patterns. Commercial kits have been used to assess biochemical parameters. The detection of the rs28362491 genotype was carried out by the method of restriction fragment length polymorphism. Traditional (TDP) and western dietary pattern (WDP) were extracted. We observed an interaction of adherence to TDP and rs28362491 on the odds of having a high Gensini score. These interactions indicated that higher adherence to TDP was associated with higher odds of having a high Gensini score for patients with DD genotype than for those with II genotype. (OR 2.33, 95%CI 1.00-5.44; P = 0.05). These interactions remained statistically significant even after confounder variables. We observed an interaction between higher adherence to TDP and rs28362491 variants on the odds of high low-density lipoprotein cholesterol levels (P = 0.04) in the unadjusted model. We found a significant interaction of this polymorphism and higher adherence to WDP on the odds of having a high Gensini score in the unadjusted model (P = 0.04). This study provides a basis for future research on NF-KB1 gene and diet interaction. More large-scale longitudinal studies are needed to validate these findings.
Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Humanos , Angiografia Coronária , Estudos Transversais , Irã (Geográfico) , Proteínas de Ligação a DNARESUMO
Introduction: Genetic and environmental factors are involved in the pathogenesis of cardiovascular diseases (CVDs). The aim of the study was to investigate between the genotype of the NFKB1 gene and the cardiometabolic risk factor in patients undergoing coronary angiography. Methods: This cross-sectional study was conducted on 462 adults (male and women) aged between 35 and 75 years who referred to Afshar Hospital for coronary angiography in 2021- 2022. The polymerase chain reaction restriction fragment length polymorphism method was used to detect the genotype of rs28362491. Biochemical parameters were measured using commercial kits. Gensini and Syntax scores were calculated using the angiography result to assess the extent of coronary artery stenosis. We used multivariate logistic regression analysis to examine the relationship between genotype variants and cardiometabolic risk factors. Results: There was no association between variant genotypes and abnormally levels of serum alanine aminotransferase (ALT) (P value=0.51), aspartate aminotransferase (AST) (P value=0.99), triglyceride (TG) (P value=0.48), total cholesterol (P value=0.79), low density lipoprotein-cholestero (LDL-C) (P value=0.31), high-density lipoprotein-cholesterol (HDL-C) (P value=0.53), fast blood sugar (FBS) (P value=0.39), systolic blood pressure (P value=0.14), diastolic blood pressure (P value=0.64), Gensini score (P value=0.48) and syntax score (P value=0.74) in the crude model even after adjustment for confounding factors. Conclusion: We found no association between the ATTG polymorphism and cardiometabolic risk factors in patients who had coronary angiography. Further investigations are needed to assess the association between variants of 28362491 and cardiometabolic markers.
RESUMO
The present work aimed to review the potential mechanisms used by macrophages to kill intracellular bacteria, their entrance to the cell, and mechanisms of escape of cellular immunity and applications of various nanoparticles. Since intracellular bacteria such as Mycobacterium and Brucella can survive in host cells and can resist the lethal power of macrophages, they can cause chronic disease or recur in 10-30% of cases in improved patients Nano drug-based therapeutics are promising tools for treating intracellular bacteria and preventing recurrence of the disease caused by these bacteria. In addition, among their unique features, we can mention the small size and the ability of these compounds to purposefully reach the target location.
Assuntos
Infecções Bacterianas/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Nanopartículas/administração & dosagem , Humanos , Macrófagos/metabolismoRESUMO
The biofilm community of microorganisms has been identified as the dominant mode of microbial growth in nature and a common characteristic of different microorganisms such as Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The biofilm structure helps in the protection from environmental threats including host immune system and antimicrobial agents. Thus, the biofilm community has led to a higher prevalence of multidrug-resistant (MDR) strains in recent years. In this regard, the use of a new class of antibiotics, natural compounds, and anti-biofilm enzymes has been considered for the destruction of the microbial biofilm. However, different drawbacks such as low penetration, high susceptibility to degradation, instability, and poor solubility in aqueous solutions limit the use of anti-biofilm agents (ABAs) in a clinical setting. As such, recent studies have been using poly lactic-co-glycolic acid (PLGA)-based nanoplatforms (PLGA NPFs) for delivery of ABAs that have reported promising results. These particles, due to proper drug loading and release kinetics, could suppress microbial attachment, colonization, and biofilm formation for a long time. Additionally, PLGA NPFs, because of the high drug-loading efficiencies, hydrophilic surface, negative charge, and electrostatic interaction, lead to effective penetration of antibiotics to the deeper layer of the biofilm, thereby eliminating the microbial biofilm. Thus, PLGA NPFs could be considered as a potential candidate for coating catheters and other medical material surfaces for inhibition and destruction of the microbial biofilm. However, the exact interaction of PLGA NPFs and the microbial biofilm should be evaluated in animal studies. Additionally, a future goal will be to develop PLGA formulations as systems that can be used for the treatment of the MDR microbial biofilm, since the exact interactions of PLGA NPFs and these biofilm structures are not elucidated. In the present review article, we have discussed various aspects of PLGA usage for inhibition and destruction of the microbial biofilm along with different methods and procedures that have been used for improving PLGA NPF efficacy against the microbial biofilm.
Assuntos
Biofilmes , Glicóis , Antibacterianos/química , Antibacterianos/farmacologia , Glicóis/farmacologia , Testes de Sensibilidade Microbiana , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Pseudomonas aeruginosaRESUMO
Brucellosis is a systemic disease in both acute and chronic forms which can affect any organ or tissue in the body. One of the biggest issues in treating this disease is its relapse. In this study, a complete treatment of brucellosis was evaluated using enhanced performance of doxycycline and hydroxychloroquine drugs by using solid lipid nanoparticles (SLN) conjugated cadmium-telluride quantum dots. The double emulsion method was used to prepare SLN and cadmium-telluride quantum dots. The physicochemical properties of NPs were determined. The effect of nanoparticle-loaded antibiotics against Brucella melitensis was determined by well diffusion, minimum inhibitory concentration (MIC), cell culture, and animal studies. The means of particle size, PDI, zeta potential, drugs loading, and encapsulation efficiency were 214 ± 25 nm, 0.385 ± 0.022, -18.7 ± 2.3 mV, 17.7 ± 1.5%, and 94.15 ± 2.6%, respectively. The results of FTIR and DSC showed that no chemical reaction occurred between the components of the NPs. The effect of free drug and NPs on bacteria was the same by well diffusion and MIC method. Drug-loaded NPs significantly reduced the number of CFUs in the cell line and acute and chronic brucellosis compared to the free drug. In conclusion, the synthesized nanoparticles were safe and green. With the slow release of the drug (100 h), the accumulation of the drug at the bacterial site increases and causes a greater effect on the B. melitensis and improves the disease of brucellosis. The use of synthesized nanodrugs in this study had promising therapeutic results.