Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Virol ; 160(11): 2887-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26255054

RESUMO

This is the first description of the complete genome sequence of a new bipartite begomovirus isolated from tomato (Solanum lycopersicum) in French Guiana, for which we propose the tentative name "tomato chlorotic mottle Guyane virus" (ToCMoGFV). DNA-A and -B nucleotide sequences of ToCMoGFV are only distantly related to known New World begomoviruses. They share the highest nucleotide sequence identity of 80% with the Brazilian isolates of macroptilium yellow spot virus (MacYSV) and 73% with soybean chlorotic spot virus (SBCSV). Phylogenetic analysis demonstrated that this novel virus belongs to a new lineage of New World bipartite begomoviruses. The discovery of this new virus confirms the high genetic diversity of begomoviruses in Latin America.


Assuntos
Begomovirus/isolamento & purificação , Begomovirus/fisiologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Sequência de Bases , Begomovirus/classificação , Begomovirus/genética , Guiana Francesa , Genoma Viral , Dados de Sequência Molecular , Filogenia
2.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066307

RESUMO

The cultivation of pineapple (Ananas comosus) is threatened worldwide by mealybug wilt disease of pineapple (MWP), whose etiology is not yet fully elucidated. In this study, we characterized pineapple mealybug wilt-associated ampeloviruses (PMWaVs, family Closteroviridae) from a diseased pineapple plant collected from Reunion Island, using a high-throughput sequencing approach combining Illumina short reads and Nanopore long reads. Reads co-assembly resulted in complete or near-complete genomes for six distinct ampeloviruses, including the first complete genome of pineapple mealybug wilt-associated virus 5 (PMWaV5) and that of a new species tentatively named pineapple mealybug wilt-associated virus 7 (PMWaV7). Short reads data provided high genome coverage and sequencing depths for all six viral genomes, contrary to long reads data. The 5' and 3' ends of the genome for most of the six ampeloviruses could be recovered from long reads, providing an alternative to RACE-PCRs. Phylogenetic analyses did not unveil any geographic structuring of the diversity of PMWaV1, PMWaV2 and PMWaV3 isolates, supporting the current hypothesis that PMWaVs were mainly spread by human activity and vegetative propagation.


Assuntos
Ananas , Closteroviridae , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas , Ananas/virologia , Doenças das Plantas/virologia , Closteroviridae/genética , Closteroviridae/classificação , Closteroviridae/isolamento & purificação , Reunião , RNA Viral/genética
3.
Plant Dis ; 97(3): 373-378, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30722361

RESUMO

Asiatic citrus canker disease, caused by Xanthomonas citri pv. citri, seriously impacts citrus production worldwide. Two pathogenic variants, A and A*/Aw, have been described within this pathovar. Two additional pathovars of X. citri with a limited geographic distribution and reduced pathogenicity, namely X. citri pvs. aurantifolii and bilvae, are also pathogenic to citrus and some rutaceous species. Rapid and reliable identification is required for these citrus pathogens, which are classified as a quarantine organism in citrus-producing countries. The specificity of nine polymerase chain reaction primers previously designed for the identification of X. citri pv. citri or citrus bacterial canker strains (both pvs. citri and aurantifolii) was assayed on a large strain collection (n = 87), including the two pathotypes of X. citri pv. citri, other genetic related or unrelated pathogenic xanthomonads, and saprophytic xanthomonads. This study gave congruent results with the original articles when testing the same strains or pathovars but the use of a broad inclusivity and exclusivity panel of strains highlighted new findings. Particularly, primers 2/3, 4/7, and KingF/R failed to provide amplification for three strains from the pathotype A*/Aw. Moreover, all pairs of primers detected at least one non-target strain. These data were supported by in silico analysis of the DNA sequences available from National Center for Biotechnology Information databases.

4.
PLoS One ; 12(2): e0171767, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178348

RESUMO

Fusarium oxysporum f. sp. cubense (Foc) is one of the most important threats to global banana production. Strategies to control the pathogen are lacking, with plant resistance offering the only long-term solution, if sources of resistance are available. Prevention of introduction of Foc into disease-free areas thus remains a key strategy to continue sustainable banana production. In recent years, strains of Foc affecting Cavendish bananas have destroyed plantations in a number of countries in Asia and in the Middle East, and one African country. One vegetative compatibility group (VCG), 01213/16, is considered the major threat to bananas in tropical and subtropical climatic conditions. However, other genetically related VCGs, such as 0121, may potentially jeopardize banana cultures if they were introduced into disease-free areas. To prevent the introduction of these VCGs into disease-free Cavendish banana-growing countries, a real-time PCR test was developed to accurately detect both VCGs. A previously described putative virulence gene was used to develop a specific combination of hydrolysis probe/primers for the detection of tropical Foc race 4 strains. The real-time PCR parameters were optimized by following a statistical approach relying on orthogonal arrays and the Taguchi method in an attempt to enhance sensitivity and ensure high specificity of the assay. This study also assessed critical performance criteria, such as repeatability, reproducibility, robustness, and specificity, with a large including set of 136 F. oxysporum isolates, including 73 Foc pathogenic strains representing 24 VCGs. The validation data demonstrated that the new assay could be used for regulatory testing applications on banana plant material and can contribute to preventing the introduction and spread of Foc strains affecting Cavendish bananas in the tropics.


Assuntos
Fusarium/classificação , Fusarium/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Variância , Sondas de DNA , DNA Fúngico , DNA Intergênico , Musa/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Front Plant Sci ; 8: 2139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312394

RESUMO

Epidemiological surveillance of plant pathogens based on genotyping methods is mandatory to improve disease management strategies. In the Southwest Indian Ocean (SWIO) islands, bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is hampering the production of many sustainable and cash crops. To thoroughly analyze the genetic diversity of the RSSC in the SWIO, we performed a wide sampling survey (in Comoros, Mauritius, Reunion, Rodrigues, and Seychelles) that yielded 1,704 isolates from 129 plots, mainly from solanaceous crops. Classification of the isolates to the four major RSSC phylogenetic groups, named phylotypes, showed that 87% were phylotype I, representing the most prevalent strain in each of the SWIO islands. Additionally, 9.7% were phylotype II, and 3.3% were phylotype III; however, these isolates were found only in Reunion. Phylotype IV (2 isolates), known to be restricted to Indonesia-Australia-Japan, was reported in Mauritius, representing the first report of this group in the SWIO. Partial endoglucanase (egl) sequencing, based on the selection of 145 isolates covering the geographic and host diversity in the SWIO (also including strains from Mayotte and Madagascar), revealed 14 sequevars with Reunion and Mauritius displaying the highest sequevar diversity. Through a multilocus sequence analysis (MLSA) scheme based on the partial sequencing of 6 housekeeping genes (gdhA, gyrB, rplB, leuS, adk, and mutS) and 1 virulence-associated gene (egl), we inferred the phylogenetic relationships between these 145 SWIO isolates and 90 worldwide RSSC reference strains. Phylotype I was the most recombinogenic, although recombination events were detected among all phylotypes. A multilocus sequence typing (MLST) scheme identified 29 sequence types (STs) with variable geographic distributions in the SWIO. The outstanding epidemiologic feature was STI-13 (sequevar I-31), which was overrepresented in the SWIO and obviously reflected a lineage strongly adapted to the SWIO environment. A goeBURST analysis identified eight clonal complexes (CCs) including SWIO isolates, four CCs being geographically restricted to the SWIO, and four CCs being widespread beyond the SWIO. This work, which highlights notable genetic links between African and SWIO strains, provides a basis for the epidemiological surveillance of RSSC and will contribute to BW management in the SWIO.

6.
PLoS One ; 10(3): e0122182, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811378

RESUMO

Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae.


Assuntos
Musa/microbiologia , Ralstonia solanacearum/classificação , Ralstonia solanacearum/genética , Biodiversidade , Brasil , Musa/virologia , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA