Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(6)2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29789505

RESUMO

Black phosphorus (BP), owing to its distinguished properties, has become one of the most competitive candidates for photodetectors. However, there has been little attention paid on photo-response performance of multilayer BP nanoflakes with large layer thickness. In fact, multilayer BP nanoflakes with large layer thickness have greater potential from the fabrication viewpoint as well as due to the physical properties than single or few layer ones. In this report, the thickness-dependence of the intrinsic property of BP photodetectors in the dark was initially investigated. Then the photo-response performance (including responsivity, photo-gain, photo-switching time, noise equivalent power, and specific detectivity) of BP photodetectors with relative thicker thickness was explored under a near-infrared laser beam (λIR = 830 nm). Our experimental results reveal the impact of BP's thickness on the current intensity of the channel and show degenerated p-type BP is beneficial for larger current intensity. More importantly, the photo-response of our thicker BP photodetectors exhibited a larger responsivity up to 2.42 A/W than the few-layer ones and a fast response photo-switching speed (response time is ~2.5 ms) comparable to thinner BP nanoflakes was obtained, indicating BP nanoflakes with larger layer thickness are also promising for application for ultra-fast and ultra-high near-infrared photodetectors.

2.
J Nanosci Nanotechnol ; 17(1): 482-87, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29624327

RESUMO

The state-of-the-art infrared camera suffers from the trade-off between sensitivity and cost. The bolometer infrared sensors are low resolution and slow speed while the quantum photodetectors are bulky and expensive. In this paper, the novel low dimensional material Carbon Nanotube (CNT) based non-cryogenic photodetector is proposed to detect infrared (IR) irradiance. The photoconductance and photovoltaic effect need to be distinguished to fully understand and improve nano IR detector performance. The robust test bench using digital microscope and precise five axis substage is used to measure detector photoresponse. The relative position between nanoscale sensor and IR beam is localized by mapping the photocurrent on laser spot. The distance between photodetector and infrared laser lens is leveraged by digital microscope. The experimental results show photovoltaic quantum effect dominates CNT-Metal Schottky based IR detector and the photoresponse is dependent on contact size and metal materials. The photoresponsivity can reach to 16.8 µA/mW at 808 nm wavelength. The proposed method will be applicable for 1D/2D nanoscale material based photodiode characterization.

3.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381034

RESUMO

Understanding the link between the human gut virome and diseases has garnered significant interest in the research community. Extracting virus-related information from metagenomic sequencing data is crucial for unravelling virus composition, host interactions, and disease associations. However, current metagenomic analysis workflows for viral genomes vary in effectiveness, posing challenges for researchers seeking the most up-to-date tools. To address this, we present ViromeFlowX, a user-friendly Nextflow workflow that automates viral genome assembly, identification, classification, and annotation. This streamlined workflow integrates cutting-edge tools for processing raw sequencing data for taxonomic annotation and functional analysis. Application to a dataset of 200 metagenomic samples yielded high-quality viral genomes. ViromeFlowX enables efficient mining of viral genomic data, offering a valuable resource to investigate the gut virome's role in virus-host interactions and virus-related diseases.


Assuntos
Genoma Viral , Metagenoma , Humanos , Fluxo de Trabalho , Interações entre Hospedeiro e Microrganismos , Metagenômica
4.
Microsyst Nanoeng ; 9: 102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565051

RESUMO

Microrobots have garnered tremendous attention due to their small size, flexible movement, and potential for various in situ treatments. However, functional modification of microrobots has become crucial for their interaction with the environment, except for precise motion control. Here, a novel artificial intelligence (AI) microrobot is designed that can respond to changes in the external environment without an onboard energy supply and transmit signals wirelessly in real time. The AI microrobot can cooperate with external electromagnetic imaging equipment and enhance the local radiofrequency (RF) magnetic field to achieve a large penetration sensing depth and a high spatial resolution. The working ranges are determined by the structure of the sensor circuit, and the corresponding enhancement effect can be modulated by the conductivity and permittivity of the surrounding environment, reaching ~560 times at most. Under the control of an external magnetic field, the magnetic tail can actuate the microrobotic agent to move accurately, with great potential to realize in situ monitoring in different places in the human body, almost noninvasively, especially around potential diseases, which is of great significance for early disease discovery and accurate diagnosis. In addition, the compatible fabrication process can produce swarms of functional microrobots. The findings highlight the feasibility of the self-sensing AI microrobots for the development of in situ diagnosis or even treatment according to sensing signals.

5.
Small Methods ; 7(7): e2201627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37075739

RESUMO

Expanding micro-/nanostructures into 3D ones results not only in boosting structural integration level with compact geometry but also enhancing a device's complexity and functionality. Herein, a synergetic 3D micro-/nanoshape transformation is proposed by combining kirigami and rolling-up techniques, or rolling-up kirigami, for the first time. As an example, micro-pinwheels with multiple flabella are patterned on pre-stressed bilayer membranes and rolled up into 3D structures. The flabella are designed when they are patterned on a 2D thin film, facilitating the integration of micro-/nanoelement and other functionalization processes during 2D patterning, which is typically much easier than post-shaping an as-fabricated 3D structure by removing redundant materials or 3D printing. The dynamic rolling-up process is simulated using elastic mechanics with a movable releasing boundary. Mutual competition and cooperation among flabella are observed during the whole release process. More importantly, the mutual conversion between translation and rotation offers a reliable platform for developing parallel microrobots and adaptive 3D micro-antennas. Additionally, 3D chiral micro-pinwheel arrays integrated into a microfluidic chip are successfully applied to detect organic molecules in solution using a terahertz apparatus. With an extra actuation, active micro-pinwheels can potentially serve as a base to functionalize 3D kirigami as tunable devices.

6.
Adv Mater ; 35(28): e2301439, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010091

RESUMO

Current state-of-the-art in situ transmission electron microscopy (TEM) characterization technology has been capable of statically or dynamically nanorobotic manipulating specimens, affording abundant atom-level material attributes. However, an insurmountable barrier between material attributes investigations and device-level application explorations exists due to immature in situ TEM manufacturing technology and sufficient external coupled stimulus. These limitations seriously prevent the development of in situ device-level TEM characterization. Herein, a representative in situ opto-electromechanical TEM characterization platform is put forward by integrating an ultra-flexible micro-cantilever chip with optical, mechanical, and electrical coupling fields for the first time. On this platform, static and dynamic in situ device-level TEM characterizations are implemented by utilizing molybdenum disulfide (MoS2 ) nanoflake as channel material. E-beam modulation behavior in MoS2  transistors is demonstrated at ultra-high e-beam acceleration voltage (300 kV), stemming from inelastic scattering electron doping into MoS2  nanoflakes. Moreover, in situ dynamic bending MoS2  nanodevices without/with laser irradiation reveals asymmetric piezoresistive properties based on electromechanical effects and secondary enhanced photocurrent based on opto-electromechanical coupling effects, accompanied by real-time monitoring atom-level characterization. This approach provides a step toward advanced in situ device-level TEM characterization technology with excellent perception ability and inspires in situ TEM characterization with ultra-sensitive force feedback and light sensing.


Assuntos
Eletricidade , Molibdênio , Elétrons , Microscopia Eletrônica de Transmissão , Pâncreas
7.
ACS Appl Mater Interfaces ; 7(4): 2294-300, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25582678

RESUMO

With the development of nanoscience and nanotechnology for the bottom-up nanofabrication of nanostructures formed from polystyrene nanoparticles, joining technology is an essential step in the manufacturing and assembly of nanodevices and nanostructures in order to provide mechanical integration and connection. To study the nanospot welding of polystyrene nanoparticles, we propose a new nanospot-soldering method using the near-field enhancement effect of a metallic atomic force microscope (AFM) probe tip that is irradiated by an optical fiber probe laser. On the basis of our theoretical analysis of the near-field enhancement effect, we set up an experimental system for nanospot soldering; this approach is carried out by using an optical fiber probe laser to irradiate the AFM probe tip to sinter the nanoparticles, providing a promising technical approach for the application of nanosoldering in nanoscience and nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA