Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(14): 8566-8579, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38989613

RESUMO

Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson-Crick/Hoogsteen, (w)cWH, and Watson-Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation.


Assuntos
Pareamento de Bases , Citosina , Metilação de DNA , DNA , Conformação de Ácido Nucleico , Água , DNA/química , Citosina/química , Água/química , Cristalografia por Raios X , Modelos Moleculares
2.
Nucleic Acids Res ; 52(15): 9303-9316, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39036959

RESUMO

Targeting inter-duplex junctions in catenated DNA with bidirectional bis-intercalators is a potential strategy for enhancing anticancer effects. In this study, we used d(CGTATACG)2, which forms a tetraplex base-pair junction that resembles the DNA-DNA contact structure, as a model target for two alkyl-linked diaminoacridine bis-intercalators, DA4 and DA5. Cross-linking of the junction site by the bis-intercalators induced substantial structural changes in the DNA, transforming it from a B-form helical end-to-end junction to an over-wounded side-by-side inter-duplex conformation with A-DNA characteristics and curvature. These structural perturbations facilitated the angled intercalation of DA4 and DA5 with propeller geometry into two adjacent duplexes. The addition of a single carbon to the DA5 linker caused a bend that aligned its chromophores with CpG sites, enabling continuous stacking and specific water-mediated interactions at the inter-duplex contacts. Furthermore, we have shown that the different topological changes induced by DA4 and DA5 lead to the inhibition of topoisomerase 2 activities, which may account for their antitumor effects. Thus, this study lays the foundations for bis-intercalators targeting biologically relevant DNA-DNA contact structures for anticancer drug development.


Assuntos
Antineoplásicos , DNA , Substâncias Intercalantes , Conformação de Ácido Nucleico , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/química , Linhagem Celular Tumoral , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
3.
Nucleic Acids Res ; 51(8): 3540-3555, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36919604

RESUMO

Combination cancer chemotherapy is one of the most useful treatment methods to achieve a synergistic effect and reduce the toxicity of dosing with a single drug. Here, we use a combination of two well-established anticancer DNA intercalators, actinomycin D (ActD) and echinomycin (Echi), to screen their binding capabilities with DNA duplexes containing different mismatches embedded within Watson-Crick base-pairs. We have found that combining ActD and Echi preferentially stabilised thymine-related T:T mismatches. The enhanced stability of the DNA duplex-drug complexes is mainly due to the cooperative binding of the two drugs to the mismatch duplex, with many stacking interactions between the two different drug molecules. Since the repair of thymine-related mismatches is less efficient in mismatch repair (MMR)-deficient cancer cells, we have also demonstrated that the combination of ActD and Echi exhibits enhanced synergistic effects against MMR-deficient HCT116 cells and synergy is maintained in a MMR-related MLH1 gene knockdown in SW620 cells. We further accessed the clinical potential of the two-drug combination approach with a xenograft mouse model of a colorectal MMR-deficient cancer, which has resulted in a significant synergistic anti-tumour effect. The current study provides a novel approach for the development of combination chemotherapy for the treatment of cancers related to DNA-mismatches.


Assuntos
Neoplasias Colorretais , Equinomicina , Humanos , Animais , Camundongos , Dactinomicina/química , Equinomicina/química , Timina , Sequência de Bases , Sítios de Ligação , Conformação de Ácido Nucleico , DNA/química
4.
Biophys J ; 123(4): 478-488, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38234090

RESUMO

Coronaviruses not only pose significant global public health threats but also cause extensive damage to livestock-based industries. Previous studies have shown that 5-benzyloxygramine (P3) targets the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleocapsid (N) protein N-terminal domain (N-NTD), inducing non-native protein-protein interactions (PPIs) that impair N protein function. Moreover, P3 exhibits broad-spectrum antiviral activity against CoVs. The sequence similarity of N proteins is relatively low among CoVs, further exhibiting notable variations in the hydrophobic residue responsible for non-native PPIs in the N-NTD. Therefore, to ascertain the mechanism by which P3 demonstrates broad-spectrum anti-CoV activity, we determined the crystal structure of the SARS-CoV-2 N-NTD:P3 complex. We found that P3 was positioned in the dimeric N-NTD via hydrophobic contacts. Compared with the interfaces in MERS-CoV N-NTD, P3 had a reversed orientation in SARS-CoV-2 N-NTD. The Phe residue in the MERS-CoV N-NTD:P3 complex stabilized both P3 moieties. However, in the SARS-CoV-2 N-NTD:P3 complex, the Ile residue formed only one interaction with the P3 benzene ring. Moreover, the pocket in the SARS-CoV-2 N-NTD:P3 complex was more hydrophobic, favoring the insertion of the P3 benzene ring into the complex. Nevertheless, hydrophobic interactions remained the primary stabilizing force in both complexes. These findings suggested that despite the differences in the sequence, P3 can accommodate a hydrophobic pocket in N-NTD to mediate a non-native PPI, enabling its effectiveness against various CoVs.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Benzeno , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Antivirais/farmacologia
5.
J Biol Chem ; 299(7): 104864, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245780

RESUMO

Secondary structures formed by expanded CUG RNA are involved in the pathobiology of myotonic dystrophy type 1. Understanding the molecular basis of toxic RNA structures can provide insights into the mechanism of disease pathogenesis and accelerate the drug discovery process. Here, we report the crystal structure of CUG repeat RNA containing three U-U mismatches between C-G and G-C base pairs. The CUG RNA crystallizes as an A-form duplex, with the first and third U-U mismatches adopting a water-mediated asymmetric mirror isoform geometry. We found for the first time that a symmetric, water-bridged U-H2O-U mismatch is well tolerated within the CUG RNA duplex, which was previously suspected but not observed. The new water-bridged U-U mismatch resulted in high base-pair opening and single-sided cross-strand stacking interactions, which in turn dominate the CUG RNA structure. Furthermore, we performed molecular dynamics simulations that complemented the structural findings and proposed that the first and third U-U mismatches are interchangeable conformations, while the central water-bridged U-U mismatch represents an intermediate state that modulates the RNA duplex conformation. Collectively, the new structural features provided in this work are important for understanding the recognition of U-U mismatches in CUG repeats by external ligands such as proteins or small molecules.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Água/química , RNA/metabolismo , Pareamento de Bases , Conformação de Ácido Nucleico
6.
Nucleic Acids Res ; 50(15): 8867-8881, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35871296

RESUMO

The use of multiple drugs simultaneously targeting DNA is a promising strategy in cancer therapy for potentially overcoming single drug resistance. In support of this concept, we report that a combination of actinomycin D (ActD) and echinomycin (Echi), can interact in novel ways with native and mismatched DNA sequences, distinct from the structural effects produced by either drug alone. Changes in the former with GpC and CpG steps separated by a A:G or G:A mismatch or in a native DNA with canonical G:C and C:G base pairs, result in significant asymmetric backbone twists through staggered intercalation and base pair modulations. A wobble or Watson-Crick base pair at the two drug-binding interfaces can result in a single-stranded 'chair-shaped' DNA duplex with a straight helical axis. However, a novel sugar-edged hydrogen bonding geometry in the G:A mismatch leads to a 'curved-shaped' duplex. Two non-canonical G:C Hoogsteen base pairings produce a sharply kinked duplex in different forms and a four-way junction-like superstructure, respectively. Therefore, single base pair modulations on the two drug-binding interfaces could significantly affect global DNA structure. These structures thus provide a rationale for atypical DNA recognition via multiple DNA intercalators and a structural basis for the drugs' potential synergetic use.


Assuntos
DNA , Pareamento de Bases , DNA/química , DNA/genética , Ligação de Hidrogênio , Estrutura Molecular , Conformação de Ácido Nucleico
7.
Nucleic Acids Res ; 49(16): 9526-9538, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33836081

RESUMO

The use of a small molecule compound to reduce toxic repeat RNA transcripts or their translated aberrant proteins to target repeat-expanded RNA/DNA with a G4C2 motif is a promising strategy to treat C9orf72-linked disorders. In this study, the crystal structures of DNA and RNA-DNA hybrid duplexes with the -GGGCCG- region as a G4C2 repeat motif were solved. Unusual groove widening and sharper bending of the G4C2 DNA duplex A-DNA conformation with B-form characteristics inside was observed. The G4C2 RNA-DNA hybrid duplex adopts a more typical rigid A form structure. Detailed structural analysis revealed that the G4C2 repeat motif of the DNA duplex exhibits a hydration shell and greater flexibility and serves as a 'hot-spot' for binding of the anthracene-based nickel complex, NiII(Chro)2 (Chro = Chromomycin A3). In addition to the original GGCC recognition site, NiII(Chro)2 has extended specificity and binds the flanked G:C base pairs of the GGCC core, resulting in minor groove contraction and straightening of the DNA backbone. We have also shown that Chro-metal complexes inhibit neuronal toxicity and suppresses locomotor deficits in a Drosophila model of C9orf72-associated ALS. The approach represents a new direction for drug discovery against ALS and FTD diseases by targeting G4C2 repeat motif DNA.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteína C9orf72/genética , DNA Forma A/ultraestrutura , Demência Frontotemporal/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Antracenos/química , Antracenos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/efeitos dos fármacos , DNA/ultraestrutura , DNA Forma A/efeitos dos fármacos , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Conformação de Ácido Nucleico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Bioorg Med Chem ; 76: 117094, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410206

RESUMO

DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.


Assuntos
Nanotecnologia , Neoplasias , Humanos , Ligantes , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , DNA
9.
Nucleic Acids Res ; 47(16): 8899-8912, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31361900

RESUMO

DNA mismatches are highly polymorphic and dynamic in nature, albeit poorly characterized structurally. We utilized the antitumour antibiotic CoII(Chro)2 (Chro = chromomycin A3) to stabilize the palindromic duplex d(TTGGCGAA) DNA with two G:G mismatches, allowing X-ray crystallography-based monitoring of mismatch polymorphism. For the first time, the unusual geometry of several G:G mismatches including syn-syn, water mediated anti-syn and syn-syn-like conformations can be simultaneously observed in the crystal structure. The G:G mismatch sites of the d(TTGGCGAA) duplex can also act as a hotspot for the formation of alternative DNA structures with a GC/GA-5' intercalation site for binding by the GC-selective intercalator actinomycin D (ActiD). Direct intercalation of two ActiD molecules to G:G mismatch sites causes DNA rearrangements, resulting in backbone distortion to form right-handed Z-DNA structures with a single-step sharp kink. Our study provides insights on intercalators-mismatch DNA interactions and a rationale for mismatch interrogation and detection via DNA intercalation.


Assuntos
Antibióticos Antineoplásicos/química , Cromomicina A3/química , DNA Forma Z/química , Dactinomicina/química , Substâncias Intercalantes/química , Oligodesoxirribonucleotídeos/química , Antibióticos Antineoplásicos/metabolismo , Pareamento Incorreto de Bases , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cromomicina A3/metabolismo , Cristalização , Cristalografia por Raios X , DNA Forma Z/metabolismo , Dactinomicina/metabolismo , Humanos , Substâncias Intercalantes/metabolismo , Modelos Moleculares , Oligodesoxirribonucleotídeos/síntese química , Soluções
10.
J Am Chem Soc ; 142(25): 11165-11172, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32478511

RESUMO

The potent DNA-binding compound triaminotriazine-acridine conjugate (Z1) functions by targeting T:T mismatches in CTG trinucleotide repeats that are responsible for causing neurological diseases such as myotonic dystrophy type 1, but its binding mechanism remains unclear. We solved a crystal structure of Z1 in a complex with DNA containing three consecutive CTG repeats with three T:T mismatches. Crystallographic studies revealed that direct intercalation of two Z1 molecules at both ends of the CTG repeat induces thymine base flipping and DNA backbone deformation to form a four-way junction. The core of the complex unexpectedly adopts a U-shaped head-to-head topology to form a crossover of each chain at the junction site. The crossover junction is held together by two stacked G:C pairs at the central core that rotate with respect to each other in an X-shape to form two nonplanar minor-groove-aligned G·C·G·C tetrads. Two stacked G:C pairs on both sides of the center core are involved in the formation of pseudo-continuous duplex DNA. Four metal-mediated base pairs are observed between the N7 atoms of G and CoII, an interaction that strongly preserves the central junction site. Beyond revealing a new type of ligand-induced, four-way junction, these observations enhance our understanding of the specific supramolecular chemistry of Z1 that is essential for the formation of a noncanonical DNA superstructure. The structural features described here serve as a foundation for the design of new sequence-specific ligands targeting mismatches in the repeat-associated structures.


Assuntos
Acridinas/química , DNA/química , Substâncias Intercalantes/química , Triazinas/química , Pareamento Incorreto de Bases , Pareamento de Bases , DNA/genética , Conformação de Ácido Nucleico , Timina/química , Repetições de Trinucleotídeos
11.
Nucleic Acids Res ; 46(13): 6416-6434, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29945186

RESUMO

The structure of the DNA duplex is arguably one of the most important biological structures elucidated in modern history. DNA duplex structure is closely associated with essential biological functions such as DNA replication and RNA transcription. In addition to the classical A-, B- and Z-DNA conformations, DNA duplexes are capable of assuming a variety of alternative conformations depending on the sequence and environmental context. A considerable number of these unusual DNA duplex structures have been identified in the past decade, and some of them have been found to be closely associated with different biological functions and pathological conditions. In this manuscript, we review a selection of unusual DNA duplex structures, particularly those originating from base pair mismatch, repetitive sequence motifs and ligand-induced structures. Although the biological significance of these novel structures has not yet been established in most cases, the illustrated conformational versatility of DNA could have relevance for pharmaceutical or nanotechnology development. A perspective on the future directions of this field is also presented.


Assuntos
Pareamento Incorreto de Bases , DNA/química , Imidazóis/química , Ligantes , Metais Pesados/química , Conformação de Ácido Nucleico , Nucleotídeos/química , Nylons/química , Pirróis/química , Sequências de Repetição em Tandem
12.
Nucleic Acids Res ; 46(14): 7396-7404, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29741655

RESUMO

Small-molecule compounds that target mismatched base pairs in DNA offer a novel prospective for cancer diagnosis and therapy. The potent anticancer antibiotic echinomycin functions by intercalating into DNA at CpG sites. Surprisingly, we found that the drug strongly prefers to bind to consecutive CpG steps separated by a single T:T mismatch. The preference appears to result from enhanced cooperativity associated with the binding of the second echinomycin molecule. Crystallographic studies reveal that this preference originates from the staggered quinoxaline rings of the two neighboring antibiotic molecules that surround the T:T mismatch forming continuous stacking interactions within the duplex. These and other associated changes in DNA conformation allow the formation of a minor groove pocket for tight binding of the second echinomycin molecule. We also show that echinomycin displays enhanced cytotoxicity against mismatch repair-deficient cell lines, raising the possibility of repurposing the drug for detection and treatment of mismatch repair-deficient cancers.


Assuntos
Pareamento Incorreto de Bases/efeitos dos fármacos , DNA/química , Equinomicina/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Pareamento Incorreto de Bases/genética , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Equinomicina/química , Equinomicina/metabolismo , Células HCT116 , Humanos , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/farmacologia , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(36): 9535-9540, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827328

RESUMO

Repetitive DNA sequences are ubiquitous in life, and changes in the number of repeats often have various physiological and pathological implications. DNA repeats are capable of interchanging between different noncanonical and canonical conformations in a dynamic fashion, causing configurational slippage that often leads to repeat expansion associated with neurological diseases. In this report, we used single-molecule spectroscopy together with biophysical analyses to demonstrate the parity-dependent hairpin structural polymorphism of TGGAA repeat DNA. We found that the DNA adopted two configurations depending on the repeat number parity (even or odd). Transitions between these two configurations were also observed for longer repeats. In addition, the ability to modulate this transition was found to be enhanced by divalent ions. Based on the atomic structure, we propose a local seeding model where the kinked GGA motifs in the stem region of TGGAA repeat DNA act as hot spots to facilitate the transition between the two configurations, which may give rise to disease-associated repeat expansion.


Assuntos
DNA/química , Sequências Repetitivas de Ácido Nucleico , Soluções Tampão , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Magnésio/química , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química
14.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615004

RESUMO

Plant pathogens secrete proteins called effectors into the cells of their host to modulate the host immune response against colonization. Effectors can either modify or arrest host target proteins to sabotage the signaling pathway, and therefore are considered potential drug targets for crop disease control. In earlier research, the Xanthomonas type III effector XopAI was predicted to be a member of the arginine-specific mono-ADP-ribosyltransferase family. However, the crystal structure of XopAI revealed an altered active site that is unsuitable to bind the cofactor NAD+, but with the capability to capture an arginine-containing peptide from XopAI itself. The arginine peptide consists of residues 60 through 69 of XopAI, and residue 62 (R62) is key to determining the protein-peptide interaction. The crystal structure and the molecular dynamics simulation results indicate that specific arginine recognition is mediated by hydrogen bonds provided by the backbone oxygen atoms from residues W154, T155, and T156, and a salt bridge provided by the E265 sidechain. In addition, a protruding loop of XopAI adopts dynamic conformations in response to arginine peptide binding and is probably involved in target protein recognition. These data suggest that XopAI binds to its target protein by the peptide-binding ability, and therefore, it promotes disease progression. Our findings reveal an unexpected and intriguing function of XopAI and pave the way for further investigation on the role of XopAI in pathogen invasion.


Assuntos
ADP Ribose Transferases/química , Arginina/química , Peptídeos/química , Xanthomonas/química , ADP Ribose Transferases/genética , Sequência de Aminoácidos/genética , Arginina/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Oxigênio/química , Peptídeos/genética , Plantas/genética , Plantas/microbiologia , Ligação Proteica , Conformação Proteica , Transdução de Sinais/genética , Xanthomonas/enzimologia , Xanthomonas/patogenicidade
15.
Int J Mol Sci ; 19(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227633

RESUMO

We have reported the propensity of a DNA sequence containing CCG repeats to form a stable i-motif tetraplex structure in the absence of ligands. Here we show that an i-motif DNA sequence may transition to a base-extruded duplex structure with a GGCC tetranucleotide tract when bound to the (CoII)-mediated dimer of chromomycin A3, CoII(Chro)2. Biophysical experiments reveal that CCG trinucleotide repeats provide favorable binding sites for CoII(Chro)2. In addition, water hydration and divalent metal ion (CoII) interactions also play a crucial role in the stabilization of CCG trinucleotide repeats (TNRs). Our data furnish useful structural information for the design of novel therapeutic strategies to treat neurological diseases caused by repeat expansions.


Assuntos
Cromomicina A3/farmacologia , Cobalto/farmacologia , Complexos de Coordenação/farmacologia , DNA/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Repetições de Trinucleotídeos/efeitos dos fármacos , Cromomicina A3/química , Cobalto/química , Complexos de Coordenação/química , Cristalografia por Raios X , Descoberta de Drogas , Modelos Moleculares
16.
Angew Chem Int Ed Engl ; 56(30): 8761-8765, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28544401

RESUMO

Small-molecule compounds targeting trinucleotide repeats in DNA have considerable potential as therapeutic or diagnostic agents against many neurological diseases. NiII (Chro)2 (Chro=chromomycin A3) binds specifically to the minor groove of (CCG)n repeats in duplex DNA, with unique fluorescence features that may serve as a probe for disease detection. Crystallographic studies revealed that the specificity originates from the large-scale spatial rearrangement of the DNA structure, including extrusion of consecutive bases and backbone distortions, with a sharp bending of the duplex accompanied by conformational changes in the NiII chelate itself. The DNA deformation of CCG repeats upon binding forms a GGCC tetranucleotide tract, which is recognized by NiII (Chro)2 . The extruded cytosine and last guanine nucleotides form water-mediated hydrogen bonds, which aid in ligand recognition. The recognition can be accounted for by the classic induced-fit paradigm.


Assuntos
Cromomicinas/farmacologia , DNA/efeitos dos fármacos , Níquel/farmacologia , Compostos Organometálicos/farmacologia , Cromomicinas/química , DNA/química , Humanos , Modelos Moleculares , Níquel/química , Compostos Organometálicos/química , Repetições de Trinucleotídeos/efeitos dos fármacos
17.
Nucleic Acids Res ; 41(7): 4284-94, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408860

RESUMO

The potent anticancer drug actinomycin D (ActD) functions by intercalating into DNA at GpC sites, thereby interrupting essential biological processes including replication and transcription. Certain neurological diseases are correlated with the expansion of (CGG)n trinucleotide sequences, which contain many contiguous GpC sites separated by a single G:G mispair. To characterize the binding of ActD to CGG triplet repeat sequences, the structural basis for the strong binding of ActD to neighbouring GpC sites flanking a G:G mismatch has been determined based on the crystal structure of ActD bound to ATGCGGCAT, which contains a CGG triplet sequence. The binding of ActD molecules to GCGGC causes many unexpected conformational changes including nucleotide flipping out, a sharp bend and a left-handed twist in the DNA helix via a two site-binding model. Heat denaturation, circular dichroism and surface plasmon resonance analyses showed that adjacent GpC sequences flanking a G:G mismatch are preferred ActD-binding sites. In addition, ActD was shown to bind the hairpin conformation of (CGG)16 in a pairwise combination and with greater stability than that of other DNA intercalators. Our results provide evidence of a possible biological consequence of ActD binding to CGG triplet repeat sequences.


Assuntos
Antibióticos Antineoplásicos/química , Dactinomicina/química , Substâncias Intercalantes/química , Repetições de Trinucleotídeos , Sítios de Ligação , DNA/química , Modelos Moleculares
18.
Biochim Biophys Acta ; 1834(6): 1054-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23501675

RESUMO

Human coronavirus OC43 (HCoV-OC43) is a causative agent of the common cold. The nucleocapsid (N) protein, which is a major structural protein of CoVs, binds to the viral RNA genome to form the virion core and results in the formation of the ribonucleoprotein (RNP) complex. We have solved the crystal structure of the N-terminal domain of HCoV-OC43 N protein (N-NTD) (residues 58 to 195) to a resolution of 2.0Å. The HCoV-OC43 N-NTD is a single domain protein composed of a five-stranded ß-sheet core and a long extended loop, similar to that observed in the structures of N-NTDs from other coronaviruses. The positively charged loop of the HCoV-OC43 N-NTD contains a structurally well-conserved positively charged residue, R106. To assess the role of R106 in RNA binding, we undertook a series of site-directed mutagenesis experiments and docking simulations to characterize the interaction between R106 and RNA. The results show that R106 plays an important role in the interaction between the N protein and RNA. In addition, we showed that, in cells transfected with plasmids that encoded the mutant (R106A) N protein and infected with virus, the level of the matrix protein gene was decreased by 7-fold compared to cells that were transfected with the wild-type N protein. This finding suggests that R106, by enhancing binding of the N protein to viral RNA plays a critical role in the viral replication. The results also indicate that the strength of N protein/RNA interactions is critical for HCoV-OC43 replication.


Assuntos
Coronavirus Humano OC43/química , Coronavirus Humano OC43/metabolismo , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Proteínas do Nucleocapsídeo de Coronavírus , Coronavirus Humano OC43/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Proteínas do Nucleocapsídeo/genética , Estrutura Terciária de Proteína , RNA Viral/química , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência
19.
Angew Chem Int Ed Engl ; 53(40): 10682-6, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25139267

RESUMO

CCG triplet repeats can fold into tetraplex structures, which are associated with the expansion of (CCG)n trinucleotide sequences in certain neurological diseases. These structures are stabilized by intertwining i-motifs. However, the structural basis for tetraplex i-motif formation in CCG triplet repeats remains largely unknown. We report the first crystal structure of a CCG-repeat sequence, which shows that two dT(CCG)3 A strands can associate to form a tetraplex structure with an i-motif core containing four C:C(+) pairs flanked by two G:G homopurine base pairs as a structural motif. The tetraplex core is attached to a short parallel-stranded duplex. Each hairpin itself contains a central CCG loop in which the nucleotides are flipped out and stabilized by stacking interactions. The helical twists between adjacent cytosine residues of this structure in the i-motif core have an average value of 30°, which is greater than those previously reported for i-motif structures.


Assuntos
DNA/química , Repetições de Trinucleotídeos , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico
20.
Virus Res ; 349: 199458, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39187047

RESUMO

Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy. In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to ß-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4'-diisothiocyano stilbene-2,2'-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA