RESUMO
Schlafen11 (SLFN11) is one of the most studied Schlafen proteins that plays vital roles in cancer therapy and virus-host interactions. Herein, we determined the crystal structure of the Sus scrofa SLFN11 N-terminal domain (NTD) to 2.69 Å resolution. sSLFN11-NTD is a pincer-shaped molecule that shares an overall fold with other SLFN-NTDs but exhibits distinct biochemical characteristics. sSLFN11-NTD is a potent RNase cleaving type I and II tRNAs and rRNAs, and with preference to type II tRNAs. Consistent with the codon usage-based translation suppression activity of SLFN11, sSLFN11-NTD cleaves synonymous serine and leucine tRNAs with different efficiencies in vitro. Mutational analysis revealed key determinates of sSLFN11-NTD nucleolytic activity, including the Connection-loop, active site, and key residues essential for substrate recognition, among which E42 constrains sSLFN11-NTD RNase activity, and all nonconservative mutations of E42 stimulated RNase activities. sSLFN11 inhibited the translation of proteins with a low codon adaptation index in cells, which mainly dependent on the RNase activity of the NTD because E42A enhanced the inhibitory effect, but E209A abolished inhibition. Our findings provide structural characterization of an important SLFN11 protein and expand our understanding of the Schlafen family.
Assuntos
Proteínas Nucleares , RNA de Transferência , Ribonucleases , Domínio Catalítico , Mutação , Ribonucleases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Sus scrofa , Proteínas Nucleares/metabolismo , AnimaisRESUMO
DDB1 and CUL4 associated factor 13 (DCAF13) is a protein coding gene located on chromosome 8q22.3, which is a hotspot amplified in various cancers. DCAF13 has been reported to be frequently amplified in breast cancer patients. However, the genetic alteration and potential role of DCAF13 in other cancers, including hepatocellular carcinoma, have not been investigated yet. In this study, we found that DCAF13 was amplified in 14.7% of the cases and its expression was upregulated (p < 0.001) in hepatocellular carcinoma samples in The Cancer Genome Atlas dataset. Increased expression of DCAF13 was also noticed in 40 paired hepatocellular carcinoma and adjacent non-tumor tissues both at messenger RNA and protein levels (p = 0.0002 and 0.0016, respectively). A positive relationship was observed between augmented DCAF13 levels and poorer tumor grade (p = 0.005), and we also found that hepatocellular carcinoma patients with increased DCAF13 expression in their tumors had significantly poorer survival compared with those with decreased DCAF13 expression (median survival time: 45.73 and 70.53 months, respectively). Multivariate Cox regression analysis showed that DCAF13 was an independent prognostic predictor of survival in hepatocellular carcinoma patients. Gene ontology and Kyoto Encyclopedia of Genes and genomes analysis indicated the potential role of DCAF13 as a crucial cell cycle regulator. Collectively, our findings revealed that the overexpression of DCAF13 in hepatocellular carcinoma was significantly associated with poor survival and may participate in the regulation of cell cycle progression.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de NeoplasiasRESUMO
Macitentan was approved by the United States Food and Drug Administration (FDA) in 2013 for the treatment of pulmonary arterial hypertension (PAH). Bergapten is a furanocoumarin that is abundant in Umbelliferae and Rutaceae plants and is widely used in many Chinese medicine prescriptions. Considering the possible combination of these two compounds, this study is aimed to investigate the effects of bergapten on the pharmacokinetics of macitentan both in vitro and in vivo. Rat liver microsomes (RLMs), human liver microsomes (HLMs), and recombinant human CYP3A4 (rCYP3A4) were used to investigate the inhibitory effects and mechanisms of bergapten on macitentan in vitro. In addition, pharmacokinetic parameters were also studied in vivo. Rats were randomly divided into two groups (six rats per group), with or without bergapten (10 mg/kg), and pretreated for 7 days. An oral dose of 20 mg/kg macitentan was administered to each group 30 min after bergapten or 0.5% CMC-Na administration on day 7. Blood was collected from the tail veins, and the plasma concentrations of macitentan and its metabolites were assessed by ultra-performance liquid chromatography - tandem mass spectrometer (UPLC-MS/MS). Finally, we analyzed the binding force of the enzyme and two small ligands by in silico molecular docking to verify the inhibitory effects of bergapten on macitentan. The in vitro results revealed that the IC50 values for RLMs, HLMs, and rCYP3A4 were 3.84, 17.82 and 12.81 µM, respectively. In vivo pharmacokinetic experiments showed that the AUC(0-t), AUC(0-∞), and Cmax of macitentan in the experimental group (20,263.67 µg/L*h, 20,378.31 µg/L*h and 2,999.69 µg/L, respectively) increased significantly compared with the control group (7,873.97 µg/L*h, 7,897.83 µg/L*h and 1,339.44 µg/L, respectively), while the CLz/F (1.07 L/h/kg) of macitentan and the metabolite-parent ratio (MR) displayed a significant decrease. Bergapten competitively inhibited macitentan metabolism in vitro and altered its pharmacokinetic characteristics in vivo. Further molecular docking analysis was also consistent with the experimental results. This study provides a reference for the combined use of bergapten and macitentan in clinical practice.
RESUMO
RNA viruses are critically dependent upon virally encoded proteases to cleave the viral polyproteins into functional proteins. Many of these proteases exhibit a similar fold and contain an essential catalytic cysteine, offering the opportunity to inhibit these enzymes with electrophilic small molecules. Here we describe the successful application of quantitative irreversible tethering (qIT) to identify acrylamide fragments that target the active site cysteine of the 3C protease (3Cpro) of Enterovirus 71, the causative agent of hand, foot and mouth disease in humans, altering the substrate binding region. Further, we re-purpose these hits towards the main protease (Mpro) of SARS-CoV-2 which shares the 3C-like fold and a similar active site. The hit fragments covalently link to the catalytic cysteine of Mpro to inhibit its activity. We demonstrate that targeting the active site cysteine of Mpro can have profound allosteric effects, distorting secondary structures to disrupt the active dimeric unit.
RESUMO
The pandemic of coronavirus disease 2019 (COVID-19) is changing the world like never before. This crisis is unlikely contained in the absence of effective therapeutics or vaccine. The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays essential roles in virus replication and immune evasion, presenting a charming drug target. Given the PLpro proteases of SARS-CoV-2 and SARS-CoV share significant homology, inhibitor developed for SARS-CoV PLpro is a promising starting point of therapeutic development. In this study, we sought to provide structural frameworks for PLpro inhibitor design. We determined the unliganded structure of SARS-CoV-2 PLpro mutant C111S, which shares many structural features of SARS-CoV PLpro. This crystal form has unique packing, high solvent content and reasonable resolution 2.5 Å, hence provides a good possibility for fragment-based screening using crystallographic approach. We characterized the protease activity of PLpro in cleaving synthetic peptide harboring nsp2/nsp3 juncture. We demonstrate that a potent SARS-CoV PLpro inhibitor GRL0617 is highly effective in inhibiting protease activity of SARS-CoV-2 with the IC50 of 2.2 ± 0.3 µmol/L. We then determined the structure of SARS-CoV-2 PLpro complexed by GRL0617 to 2.6 Å, showing the inhibitor accommodates the S3-S4 pockets of the substrate binding cleft. The binding of GRL0617 induces closure of the BL2 loop and narrows the substrate binding cleft, whereas the binding of a tetrapeptide substrate enlarges the cleft. Hence, our results suggest a mechanism of GRL0617 inhibition, that GRL0617 not only occupies the substrate pockets, but also seals the entrance to the substrate binding cleft hence prevents the binding of the LXGG motif of the substrate.
RESUMO
Mutant p53 (mutp53) proteins promote tumor invasion and metastasis in pancreatic ductal adenocarcinoma (PDAC). However, the mechanism underlying sustained activation of mutp53 oncogenic signaling is currently unclear. In this study, we report that NOP14 nucleolar protein (NOP14) expression is upregulated in PDAC tumors and metastatic tissue specimens. NOP14 overexpression promoted cell motility, whereas NOP14 inhibition decreased invasive capacity of PDAC cells. In vivo invasion assays conducted on established subcutaneously, orthotopically, and intravenously injected tumor mouse models also indicated NOP14 as a promoter of PDAC metastasis. Mechanistically, mutp53 was validated as a functional target of NOP14; NOP14 primed tumor invasion and metastasis by increasing the stability of mutp53 mRNA. The NOP14/mutp53 axis suppressed p21 expression at both the transcriptional and posttranscriptional levels via induction of miR-17-5p in PDAC cells. In vivo, high NOP14 expression in PDAC patient tumors correlated with local metastasis and lymph invasion. Overall, our findings define a novel mechanism for understanding the function of NOP14 in the metastatic cascade of PDAC. Targeting NOP14 allows for effective suppression of tumor invasion in a mutp53-dependent manner, implicating NOP14 inhibition as a potential approach for attenuating metastasis in p53-mutant tumors. Cancer Res; 77(10); 2661-73. ©2017 AACR.