Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989900

RESUMO

Annexin A11 mutations are a rare cause of amyotrophic lateral sclerosis (ALS), wherein replicated protein variants P36R, G38R, D40G and D40Y are located in a small-alpha helix within the long, disordered N-terminus. To elucidate disease mechanisms, we characterised the phenotypes induced by a genetic loss of function (LoF) and by misexpression of G38R and D40G in vivo. Loss of Annexin A11 results in a low-penetrant behavioural phenotype and aberrant axonal morphology in zebrafish homozygous knockout larvae, which is rescued by human WT Annexin A11. Both Annexin A11 knockout/down and ALS variants trigger nuclear dysfunction characterised by Lamin B2 mis-localisation. The Lamin B2 signature also presented in anterior horn, spinal cord neurons from post-mortem ALS+/-FTD patient tissue possessing G38R and D40G protein variants. These findings suggest mutant Annexin A11 acts as a dominant negative, revealing a potential early nucleopathy highlighting nuclear envelope abnormalities preceding behavioural abnormality in animal models.

2.
Development ; 146(22)2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754007

RESUMO

The embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm. Gene expression in chick indicates that this non-neural origin of pineal progenitors is conserved in amniotes. Genetic repression of placodal, but not neural crest, cell fate results in pineal hypoplasia in zebrafish, while mis-expression of transcription factors known to specify placodal identity during gastrulation promotes the formation of ectopic pineal progenitors. We also demonstrate that fibroblast growth factors (FGFs) position the pineal progenitor domain within the non-neural border by repressing pineal fate and that the Otx transcription factors promote pinealogenesis by inhibiting this FGF activity. The non-neural origin of the pineal organ reveals an underlying similarity in the formation of the pineal and pituitary glands, and suggests that all CNS neuroendocrine organs may require a non-neural contribution to form neurosecretory cells.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glândula Pineal/citologia , Glândula Pineal/embriologia , Transdução de Sinais , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Embrião de Galinha , Ectoderma/citologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Crista Neural/citologia , Placa Neural/citologia , Neuroglia/citologia , Neurônios/citologia , Sistemas Neurossecretores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Development ; 145(17)2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30082270

RESUMO

Functional analyses of genes responsible for neurodegenerative disorders have unveiled crucial links between neurodegenerative processes and key developmental signalling pathways. Mutations in SPG4-encoding spastin cause hereditary spastic paraplegia (HSP). Spastin is involved in diverse cellular processes that couple microtubule severing to membrane remodelling. Two main spastin isoforms are synthesised from alternative translational start sites (M1 and M87). However, their specific roles in neuronal development and homeostasis remain largely unknown. To selectively unravel their neuronal function, we blocked spastin synthesis from each initiation codon during zebrafish development and performed rescue analyses. The knockdown of each isoform led to different motor neuron and locomotion defects, which were not rescued by the selective expression of the other isoform. Notably, both morphant neuronal phenotypes were observed in a CRISPR/Cas9 spastin mutant. We next showed that M1 spastin, together with HSP proteins atlastin 1 and NIPA1, drives motor axon targeting by repressing BMP signalling, whereas M87 spastin acts downstream of neuropilin 1 to control motor neuron migration. Our data therefore suggest that defective BMP and neuropilin 1 signalling may contribute to the motor phenotype in a vertebrate model of spastin depletion.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neurônios Motores/citologia , Neuropilina-1/metabolismo , Espastina/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Axônios/metabolismo , Células COS , Sistemas CRISPR-Cas/genética , Linhagem Celular , Movimento Celular/genética , Chlorocebus aethiops , Proteínas de Ligação ao GTP/metabolismo , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Paraplegia Espástica Hereditária/genética , Espastina/biossíntese , Proteínas de Peixe-Zebra/biossíntese
4.
BMC Biol ; 12: 81, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25277163

RESUMO

BACKGROUND: Nodal signalling is an absolute requirement for normal mesoderm and endoderm formation in vertebrate embryos, yet the transcriptional networks acting directly downstream of Nodal and the extent to which they are conserved is largely unexplored, particularly in vivo. Eomesodermin also plays a role in patterning mesoderm and endoderm in vertebrates, but its mechanisms of action, and how it interacts with the Nodal signalling pathway are still unclear. RESULTS: Using a combination of ChIP-seq and expression analysis we identify direct targets of Smad2, the effector of Nodal signalling in blastula stage zebrafish embryos, including many novel target genes. Through comparison of these data with published ChIP-seq data in human, mouse and Xenopus we show that the transcriptional network driven by Smad2 in mesoderm and endoderm is conserved in these vertebrate species. We also show that Smad2 and zebrafish Eomesodermin a (Eomesa) bind common genomic regions proximal to genes involved in mesoderm and endoderm formation, suggesting Eomesa forms a general component of the Smad2 signalling complex in zebrafish. Combinatorial perturbation of Eomesa and Smad2-interacting factor Foxh1 results in loss of both mesoderm and endoderm markers, confirming the role of Eomesa in endoderm formation and its functional interaction with Foxh1 for correct Nodal signalling. Finally, we uncover a novel, role for Eomesa in repressing ectodermal genes in the early blastula. CONCLUSION: Our data demonstrate that evolutionarily conserved developmental functions of Nodal signalling occur through maintenance of the transcriptional network directed by Smad2. This network is modulated by Eomesa in zebrafish which acts to promote mesoderm and endoderm formation in combination with Nodal signalling, whilst Eomesa also opposes ectoderm gene expression. Eomesa therefore regulates the formation of all three germ layers in the early zebrafish embryo.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteína Smad2/genética , Proteínas com Domínio T/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Ectoderma/embriologia , Ectoderma/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endoderma/embriologia , Endoderma/metabolismo , Redes Reguladoras de Genes , Mesoderma/embriologia , Mesoderma/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Proteínas com Domínio T/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
5.
J Neurosci ; 33(16): 6877-84, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595746

RESUMO

Eye formation is regulated by a complex network of eye field transcription factors (EFTFs), including LIM-homeodomain gene LHX2. We disrupted LHX2 function at different stages during this process using a conditional knock-out strategy in mice. We find that LHX2 function is required in an ongoing fashion to maintain optic identity across multiple stages, from the formation of the optic vesicle to the differentiation of the neuroretina. At each stage, loss of Lhx2 led to upregulation of a set of molecular markers that are normally expressed in the thalamic eminence and in the anterodorsal hypothalamus in a portion of the optic vesicle or retina. Furthermore, the longer LHX2 function was maintained, the further optic morphogenesis progressed. Early loss of function caused profound mispatterning of the entire telencephalic-optic-hypothalamic field, such that the optic vesicle became mispositioned and appeared to arise from the diencephalic-telencephalic boundary. At subsequent stages, loss of Lhx2 did not affect optic vesicle position but caused arrest of optic cup formation. If Lhx2 was selectively disrupted in the neuroretina from E11.5, the neuroretina showed gross dysmorphology along with aberrant expression of markers specific to the thalamic eminence and anterodorsal hypothalamus. Our findings indicate a continual requirement for LHX2 throughout the early stages of optic development, not only to maintain optic identity by suppressing alternative fates but also to mediate multiple steps of optic morphogenesis. These findings provide new insight into the anophthalmic phenotype of the Lhx2 mutant and reveal novel roles for this transcription factor in eye development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas com Homeodomínio LIM/metabolismo , Morfogênese/genética , Organogênese/genética , Fatores de Transcrição/metabolismo , Vias Visuais/fisiologia , Fatores Etários , Animais , Padronização Corporal/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas/genética , RNA não Traduzido , Proteínas Repressoras/metabolismo , Retina/anormalidades , Retina/patologia , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Vias Visuais/embriologia
6.
Development ; 137(9): 1553-62, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20356955

RESUMO

FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon.


Assuntos
Telencéfalo/embriologia , Telencéfalo/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Xenopus/metabolismo , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Embrião não Mamífero , Humanos , Imuno-Histoquímica , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Ligação Proteica , Proteínas de Xenopus/genética
7.
Nat Commun ; 13(1): 6994, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414621

RESUMO

Loss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites. Some of these local IR mRNAs are prematurely terminated within the retained intron (PreT-IR). PreT-IR mRNAs undergo intronic polyadenylation, nuclear export, and localise to neurites in vitro and in vivo. We find these IR and PreT-IR mRNAs enriched in RNAseq datasets of tissue from patients with familial and sporadic ALS. This shared signature, between SFPQ-depleted neurons and ALS, functionally implicates SFPQ with the disease and suggests that neurite-centred perturbation of alternatively spliced isoforms drives the neurodegenerative process.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Íntrons/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Axônios/metabolismo , Neurônios Motores/metabolismo
8.
Curr Biol ; 32(23): 5099-5115.e8, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36384140

RESUMO

Regulation of pre-mRNA splicing and polyadenylation plays a profound role in neurons by diversifying the proteome and modulating gene expression in response to physiological cues. Although most of the pre-mRNA processing is thought to occur in the nucleus, numerous splicing regulators are also found in neurites. Here, we show that U1-70K/SNRNP70, a component of the major spliceosome, localizes in RNA-associated granules in zebrafish axons. We identify the extra-nuclear SNRNP70 as an important regulator of motor axonal growth, nerve-dependent acetylcholine receptor (AChR) clustering, and neuromuscular synaptogenesis. This cytoplasmic pool has a protective role for a limited number of transcripts regulating their abundance and trafficking inside axons. Moreover, non-nuclear SNRNP70 regulates splice variants of transcripts such as agrin, thereby controlling synapse formation. Our results point to an unexpected, yet essential, function of non-nuclear SNRNP70 in axonal development, indicating a role of spliceosome proteins in cytoplasmic RNA metabolism during neuronal connectivity.


Assuntos
Precursores de RNA , Peixe-Zebra , Animais , Peixe-Zebra/genética
9.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35514229

RESUMO

Manganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole-animal Ca2+ levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with Ca2+ dyshomeostasis and cellular stress. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Transporte de Cátions , Distonia , Animais , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Distonia/genética , Íons/metabolismo , Manganês/metabolismo , Manganês/toxicidade , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Nat Commun ; 12(1): 1918, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771997

RESUMO

The RNA-binding protein SFPQ plays an important role in neuronal development and has been associated with several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease. Here, we report that loss of sfpq leads to premature termination of multiple transcripts due to widespread activation of previously unannotated cryptic last exons (CLEs). These SFPQ-inhibited CLEs appear preferentially in long introns of genes with neuronal functions and can dampen gene expression outputs and/or give rise to short peptides interfering with the normal gene functions. We show that one such peptide encoded by the CLE-containing epha4b mRNA isoform is responsible for neurodevelopmental defects in the sfpq mutant. The uncovered CLE-repressive activity of SFPQ is conserved in mouse and human, and SFPQ-inhibited CLEs are found expressed across ALS iPSC-derived neurons. These results greatly expand our understanding of SFPQ function and uncover a gene regulation mechanism with wide relevance to human neuropathologies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Códon sem Sentido , Éxons/genética , Fator de Processamento Associado a PTB/genética , Animais , Sequência de Bases , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Humanos , Hibridização In Situ/métodos , Íntrons/genética , Camundongos , Neurônios/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
11.
Sci Rep ; 11(1): 13613, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193962

RESUMO

Aberrantly expressed fused in sarcoma (FUS) is a hallmark of FUS-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Wildtype FUS localises to synapses and interacts with mitochondrial proteins while mutations have been shown to cause to pathological changes affecting mitochondria, synapses and the neuromuscular junction (NMJ). This indicates a crucial physiological role for FUS in regulating synaptic and mitochondrial function that is currently poorly understood. In this paper we provide evidence that mislocalised cytoplasmic FUS causes mitochondrial and synaptic changes and that FUS plays a vital role in maintaining neuronal health in vitro and in vivo. Overexpressing mutant FUS altered synaptic numbers and neuronal complexity in both primary neurons and zebrafish models. The degree to which FUS was mislocalised led to differences in the synaptic changes which was mirrored by changes in mitochondrial numbers and transport. Furthermore, we showed that FUS co-localises with the mitochondrial tethering protein Syntaphilin (SNPH), and that mutations in FUS affect this relationship. Finally, we demonstrated mutant FUS led to changes in global protein translation. This localisation between FUS and SNPH could explain the synaptic and mitochondrial defects observed leading to global protein translation defects. Importantly, our results support the 'gain-of-function' hypothesis for disease pathogenesis in FUS-related ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Sinapses/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Transporte/genética , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/genética , Proteína FUS de Ligação a RNA/genética , Ratos , Sinapses/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
12.
Sci Rep ; 11(1): 16299, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381067

RESUMO

Correct orchestration of nervous system development is a profound challenge that involves coordination of complex molecular and cellular processes. Mechanistic target of rapamycin (mTOR) signaling is a key regulator of nervous system development and synaptic function. The mTOR kinase is a hub for sensing inputs including growth factor signaling, nutrients and energy levels. Activation of mTOR signaling causes diseases with severe neurological manifestations, such as tuberous sclerosis complex and focal cortical dysplasia. However, the molecular mechanisms by which mTOR signaling regulates nervous system development and function are poorly understood. Unkempt is a conserved zinc finger/RING domain protein that regulates neurogenesis downstream of mTOR signaling in Drosophila. Unkempt also directly interacts with the mTOR complex I component Raptor. Here we describe the generation and characterisation of mice with a conditional knockout of Unkempt (UnkcKO) in the nervous system. Loss of Unkempt reduces Raptor protein levels in the embryonic nervous system but does not affect downstream mTORC1 targets. We also show that nervous system development occurs normally in UnkcKO mice. However, we find that Unkempt is expressed in the adult cerebellum and hippocampus and behavioural analyses show that UnkcKO mice have improved memory formation and cognitive flexibility to re-learn. Further understanding of the role of Unkempt in the nervous system will provide novel mechanistic insight into the role of mTOR signaling in learning and memory.


Assuntos
Cognição/fisiologia , Proteínas de Ligação a DNA/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Dedos de Zinco/fisiologia , Animais , Cerebelo/metabolismo , Drosophila/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/fisiologia , Transdução de Sinais/fisiologia
13.
Dev Biol ; 331(2): 101-12, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19397905

RESUMO

The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of beta-catenin and subsequent hyperactivation of Wnt/beta-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/beta-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/beta-catenin signalling is required for maintenance of local organizers and tectal integrity.


Assuntos
Encéfalo/embriologia , Organizadores Embrionários/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Padronização Corporal/fisiologia , Encéfalo/anormalidades , Encéfalo/metabolismo , Embrião não Mamífero/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Mesencéfalo/anormalidades , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Wnt/fisiologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , beta Catenina/genética , beta Catenina/metabolismo
14.
PLoS Biol ; 5(4): e69, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17341136

RESUMO

The vertebrate neural plate contains distinct domains of gene expression, prefiguring the future brain areas. In this study, we draw an extended expression map of the rostral neural plate that reveals discrete domains inside the presumptive posterior forebrain. We show, by fate mapping, that these well-defined cell populations will develop into specific diencephalic regions. To address whether these early subterritories are already committed to restricted identities, we began to analyse the consequences of ablation and transplantation of these specific cell populations. We found that precursors of the prethalamus are already specified and irreplaceable at late gastrula stage, because ablation of these cells results in loss of prethalamic markers. Moreover, when transplanted into the ectopic environment of the presumptive hindbrain, these cells still pursue their prethalamic differentiation program. Finally, transplantation of these precursors, in the rostral-most neural epithelium, induces changes in cell identity in the surrounding host forebrain. This cell-non-autonomous property led us to propose that these committed prethalamic precursors may play an instructive role in the regionalization of the developing diencephalon.


Assuntos
Diencéfalo/embriologia , Gástrula , Tálamo/embriologia , Animais , Animais Geneticamente Modificados , Linhagem da Célula , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
15.
Neuron ; 47(1): 43-56, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15996547

RESUMO

During regional patterning of the anterior neural plate, a medially positioned domain of cells is specified to adopt retinal identity. These eye field cells remain coherent as they undergo morphogenetic events distinct from other prospective forebrain domains. We show that two branches of the Wnt signaling pathway coordinate cell fate determination with cell behavior during eye field formation. Wnt/beta-catenin signaling antagonizes eye specification through the activity of Wnt8b and Fz8a. In contrast, Wnt11 and Fz5 promote eye field development, at least in part, through local antagonism of Wnt/beta-catenin signaling. Additionally, Wnt11 regulates the behavior of eye field cells, promoting their cohesion. Together, these results allow us to postulate a model in which Wnt11 and Fz5 signaling promotes early eye development through the coordinated antagonism of signals that suppress retinal identity and promotion of coherence of eye field cells.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Olho/crescimento & desenvolvimento , Glicoproteínas/genética , Glicoproteínas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Transativadores/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Movimento Celular/fisiologia , Transplante de Células , Clonagem Molecular , Diencéfalo/embriologia , Diencéfalo/crescimento & desenvolvimento , Diencéfalo/fisiologia , Olho/embriologia , Receptores Frizzled , Hibridização In Situ , Cloreto de Lítio/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G , Campos Visuais/fisiologia , Proteínas Wnt , Peixe-Zebra , beta Catenina
16.
Dev Cell ; 6(2): 167-81, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14960272

RESUMO

The tremendous complexity of the adult forebrain makes it a challenging task to elucidate how this structure forms during embryonic development. Nevertheless, we are beginning to understand how a simple epithelial sheet of ectoderm gives rise to the labyrinthine network of cells that constitutes the functional forebrain. Here, we discuss early events in forebrain development--those that lead to the establishment of the anterior neural plate and the regional subdivision of this territory into the different domains of the prospective forebrain.


Assuntos
Indução Embrionária , Prosencéfalo/embriologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Ectoderma/citologia , Ectoderma/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Morfogênese/genética , Prosencéfalo/citologia , Transdução de Sinais/fisiologia , Especificidade da Espécie , Fatores de Tempo
17.
Dev Cell ; 51(6): 775-786.e3, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31786070

RESUMO

Dickkopf-1 (Dkk1) is a secreted Wnt antagonist with a well-established role in head induction during development. Numerous studies have emerged implicating Dkk1 in various malignancies and neurodegenerative diseases through an unknown mechanism. Using zebrafish gastrulation as a model for collective cell migration, we unveil such a mechanism, identifying a role for Dkk1 in control of cell connectivity and polarity in vivo, independent of its known function. We find that Dkk1 localizes to adhesion complexes at the plasma membrane and regions of concentrated actomyosin, suggesting a direct involvement in regulation of local cell adhesion. Our results show that Dkk1 represses cell polarization and integrity of cell-cell adhesion, independently of its impact on ß-catenin protein degradation. Concurrently, Dkk1 prevents nuclear localization of ß-catenin by restricting its distribution to a discrete submembrane pool. We propose that redistribution of cytosolic ß-catenin by Dkk1 concomitantly drives repression of cell adhesion and inhibits ß-catenin-dependent transcriptional output.


Assuntos
Comunicação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Animais , Movimento Celular/fisiologia , Proteínas Wnt/metabolismo , Peixe-Zebra
18.
PLoS One ; 14(1): e0211073, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30695021

RESUMO

Through forward genetic screening for mutations affecting visual system development, we identified prominent coloboma and cell-autonomous retinal neuron differentiation, lamination and retinal axon projection defects in eisspalte (ele) mutant zebrafish. Additional axonal deficits were present, most notably at midline axon commissures. Genetic mapping and cloning of the ele mutation showed that the affected gene is slbp, which encodes a conserved RNA stem-loop binding protein involved in replication dependent histone mRNA metabolism. Cells throughout the central nervous system remained in the cell cycle in ele mutant embryos at stages when, and locations where, post-mitotic cells have differentiated in wild-type siblings. Indeed, RNAseq analysis showed down-regulation of many genes associated with neuronal differentiation. This was coincident with changes in the levels and spatial localisation of expression of various genes implicated, for instance, in axon guidance, that likely underlie specific ele phenotypes. These results suggest that many of the cell and tissue specific phenotypes in ele mutant embryos are secondary to altered expression of modules of developmental regulatory genes that characterise, or promote transitions in, cell state and require the correct function of Slbp-dependent histone and chromatin regulatory genes.


Assuntos
Animais Geneticamente Modificados , Orientação de Axônios/genética , Diferenciação Celular , Proliferação de Células , Coloboma , Doenças Retinianas , Proteínas de Peixe-Zebra/deficiência , Peixe-Zebra , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Coloboma/embriologia , Coloboma/genética , Coloboma/patologia , Histonas/genética , Histonas/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Doenças Retinianas/embriologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
19.
Neuron ; 35(2): 255-65, 2002 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12160744

RESUMO

Cells at the anterior boundary of the neural plate (ANB) can induce telencephalic gene expression when transplanted to more posterior regions. Here, we identify a secreted Frizzled-related Wnt antagonist, Tlc, that is expressed in ANB cells and can cell nonautonomously promote telencephalic gene expression in a concentration-dependent manner. Moreover, abrogation of Tlc function compromises telencephalic development. We also identify Wnt8b as a locally acting modulator of regional fate in the anterior neural plate and a likely target for antagonism by Tlc. Finally, we show that tlc expression is regulated by signals that establish early antero-posterior and dorso-ventral ectodermal pattern. From these studies, we propose that local antagonism of Wnt activity within the anterior ectoderm is required to establish the telencephalon.


Assuntos
Padronização Corporal/genética , Gástrula/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas/isolamento & purificação , Proteínas Proto-Oncogênicas/metabolismo , Telencéfalo/embriologia , Fator de Crescimento Transformador beta , Proteínas de Peixe-Zebra/isolamento & purificação , Peixe-Zebra/embriologia , Animais , Proteína Morfogenética Óssea 7 , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Proteínas do Citoesqueleto , Denervação , Gástrula/citologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Mesencéfalo/citologia , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Dados de Sequência Molecular , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Filogenia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Telencéfalo/citologia , Telencéfalo/metabolismo , Proteínas Wnt , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
20.
Front Neurosci ; 12: 87, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515359

RESUMO

As the embryonic ectoderm is induced to form the neural plate, cells inside this epithelium acquire restricted identities that will dictate their behavior and progressive differentiation. The first behavior adopted by most neural plate cells is called neurulation, a morphogenetic movement shaping the neuroepithelium into a tube. One cell population is not adopting this movement: the eye field. Giving eye identity to a defined population inside the neural plate is therefore a key neural fate decision. While all other neural population undergo neurulation similarly, converging toward the midline, the eye field moves outwards, away from the rest of the forming neural tube, to form vesicles. Thus, while delay in acquisition of most other fates would not have significant morphogenetic consequences, defect in the establishment of the eye field would dramatically impact the formation of the eye. Yet, very little is understood of the molecular and cellular mechanisms driving them. Here, we summarize what is known across vertebrate species and propose a model highlighting what is required to form the essential vesicles that initiate the vertebrate eyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA