Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 154(3): 327-337, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32591977

RESUMO

Capillary network of skeletal muscle has a crucial role in oxygen supply and is strongly associated with the phenotype and metabolic profile of muscle fibers. Abundant literature has explored capillarization of skeletal muscle in different populations and in response to different interventions. Capillary and fiber type identification techniques have considerably evolved over the last decades, but to the best of our knowledge, no validated immunohistochemical method has yet been developed to simultaneously identify capillaries (using CD31), the three different muscle fiber types, and basal lamina. Nine human muscle biopsies of vastus lateralis were stained using 5 different methods to test: the reliability of different CD31 antibodies for capillary identification, the reliability between single-section or serial-section methods, and the intra-experimenter reproducibility in visual detection of capillaries. High reliability for the different antibodies directed against capillaries was observed for capillary contacts (CC) measurements (intra-class correlations (ICC) [ICC95%] of 0.89 [0.72; 0.96] for type I fibers, 0.93 [0.81; 0.97] for type IIA fibers, 0.88 [0.71; 0.96] for type IIX fibers, 0.95 [0.86; 0.98] for all fiber types) as well as a high level of similarity between single and serial sections methods. A strong similarity in capillary analysis between the different methods was obtained for each sample measurements. Analysis of Lin's concordance correlation coefficients and Bland and Altman's graphics showed a strong intra-experimenter reproducibility. This article proposes two time- and tissue-sparing immunohistochemical methods to accurately assess a complete fiber typing (type I, IIA, and IIX) along with muscle capillarization on a single muscle section.


Assuntos
Membrana Basal/química , Capilares/química , Imuno-Histoquímica/métodos , Fibras Musculares Esqueléticas/química , Anticorpos Monoclonais/metabolismo , Antígenos CD34/metabolismo , Membrana Basal/metabolismo , Capilares/metabolismo , Humanos , Fibras Musculares Esqueléticas/metabolismo
2.
Am J Hematol ; 95(11): 1257-1268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681734

RESUMO

Sickle cell disease (SCD) patients display skeletal muscle hypotrophy, altered oxidative capacity, exercise intolerance and poor quality of life. We previously demonstrated that moderate-intensity endurance training is beneficial for improving muscle function and quality of life of patients. The present study evaluated the effects of this moderate-intensity endurance training program on skeletal muscle structural and metabolic properties. Of the 40 randomized SCD patients, complete data sets were obtained from 33. The training group (n = 15) followed a personalized moderate-intensity endurance training program, while the non-training (n = 18) group maintained a normal lifestyle. Biopsies of the vastus lateralis muscle and submaximal incremental cycling tests were performed before and after the training program. Endurance training increased type I muscle fiber surface area (P = .038), oxidative enzyme activity [citrate synthase, P < .001; ß-hydroxyacyl-CoA dehydrogenase, P = .009; type-I fiber cytochrome c oxidase, P = .042; respiratory chain complex IV, P = .017] and contents of respiratory chain complexes I (P = .049), III (P = .005), IV (P = .003) and V (P = .002). Respiratory frequency, respiratory exchange ratio, blood lactate concentration and rating of perceived exertion were all lower at a given submaximal power output after training vs non-training group (all P < .05). The muscle content of proteins involved in glucose transport and pH regulation were unchanged in the training group relative to the non-training group. The moderate-intensity endurance exercise program improved exercise capacity and muscle structural and oxidative properties. This trial was registered at www.clinicaltrials.gov as #NCT02571088.


Assuntos
Anemia Falciforme , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Treino Aeróbico , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Adulto , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Transporte de Elétrons , Feminino , Humanos , Masculino , Músculo Esquelético/patologia , Qualidade de Vida
3.
FASEB J ; 31(6): 2562-2575, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28254758

RESUMO

The purpose of this study was to investigate the effects of a partial suppression of monocarboxylate transporter (MCT)-1 on skeletal muscle pH, energetics, and function (MCT1+/- mice). Twenty-four MCT1+/- and 13 wild-type (WT) mice were subjected to a rest-exercise-recovery protocol, allowing assessment of muscle energetics (by magnetic resonance spectroscopy) and function. The study included analysis of enzyme activities and content of protein involved in pH regulation. Skeletal muscle of MCT1+/- mice had lower MCT1 (-61%; P < 0.05) and carbonic anhydrase (CA)-II (-54%; P < 0.05) contents. Although intramuscular pH was higher in MCT1+/- mice at rest (P < 0.001), the mice showed higher acidosis during the first minute of exercise (P < 0.01). Then, the pH time course was similar among groups until exercise completion. MCT1+/- mice had higher specific peak (P < 0.05) and maximum tetanic (P < 0.01) forces and lower fatigability (P < 0.001) when compared to WT mice. We conclude that both MCT1 and CAII are involved in the homeostatic control of pH in skeletal muscle, both at rest and at the onset of exercise. The improved muscle function and resistance to fatigue in MCT1+/- mice remain unexplained.-Chatel, B., Bendahan, D., Hourdé, C., Pellerin, L., Lengacher, S., Magistretti, P., Fur, Y. L., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice.


Assuntos
Anidrase Carbônica II/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/fisiologia , Simportadores/metabolismo , Animais , Peso Corporal , Anidrase Carbônica II/genética , Regulação Enzimológica da Expressão Gênica , Haplótipos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética
4.
Mediators Inflamm ; 2018: 9365745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008613

RESUMO

Objective: In a context of inflammatory disease such as juvenile idiopathic arthritis (JIA), we do not know what impact physical activity may have on a deregulated immune system. The objective is to measure the impact of a single bout of exercise on plasma inflammatory markers such as calprotectin, IL-6, sIL-6R, sgp130, and the hypothalamic-pituitary-adrenal axis in children with juvenile idiopathic arthritis. Methods: Twelve children with JIA performed a nonexercise control day and a consecutive day that included a 20 min exercise bout at 70% of max-HR at 08:30 am. Venous blood samples were taken at 08:30, 08:50, 09:30, 10:30 am, and 12:00 pm to measure plasma concentrations of calprotectin, IL-6, sIL-6R, sgp130, cortisol, and ACTH. Pain was evaluated at 08:30, 08:50 am, and 06:00 pm. Results: There was a transient twofold increase in postexercise self-evaluated pain (p = 0.03) that disappeared in the evening. A single bout of exercise resulted in a 1.7-fold increase in plasma calprotectin (p < 0.001) but not IL-6 and its soluble receptors. Calprotectin levels returned to baseline within 3 hours after cessation of exercise. Conclusion: Acute exercise in children with JIA induced slightly musculoskeletal leg pain and transient increased plasma calprotectin levels but not IL-6 levels. Trial registration in ClinicalTrials.gov, reference number NCT 02502539, registered on 29 May 2015.


Assuntos
Artrite Juvenil/fisiopatologia , Exercício Físico , Inflamação/fisiopatologia , Interleucina-6/sangue , Complexo Antígeno L1 Leucocitário/sangue , Adolescente , Área Sob a Curva , Artrite Juvenil/terapia , Índice de Massa Corporal , Criança , Receptor gp130 de Citocina/sangue , Feminino , Humanos , Inflamação/terapia , Perna (Membro)/patologia , Masculino , Manejo da Dor , Receptores de Interleucina-6/sangue
6.
Int J Sports Med ; 39(11): 867-874, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119133

RESUMO

The aim of this study was to measure the impact, at 24 h post-exercise, of a single exercise bout on plasma inflammatory markers such as calprotectin, IL-6, sIL-6 R, sgp130 and the hypothalamic-pituitary-adrenal (HPA) axis in children with juvenile idiopathic arthritis (JIA).Twelve children with JIA attended the laboratory on three consecutive days (control day, exercise day and 24 h post-exercise), including a 20-min exercise bout on a cycle-ergometer at 70% of max. HR at 8:30 a.m. on day 2. Plasma concentrations of calprotectin, IL-6, sIL-6 R, sgp130, cortisol, ACTH and DHEA were measured on venous blood samples taken every day.at rest and at 8:30, 8:50, 9:30, 10:30 a.m. and 12:00, 3:00, 5:30 p.m.A single exercise bout increased plasma calprotectin 1.7-fold (p<0.001) but did not increase IL-6 and soluble IL-6 receptors in short-term post-exercise recovery. However, at 24 h post-exercise, calprotectin, IL-6 and its receptors had decreased compared to control-day levels. There was a transient 2-fold increase in post-exercise self-evaluated pain (p=0.03) that disappeared in the evening without repercussions the following day.Physical activity in children with JIA results in a slight transient systemic inflammation but seems to be followed by counter-regulation at 24 h post-exercise with a decrease in proinflammatory markers.


Assuntos
Artrite Juvenil/fisiopatologia , Biomarcadores/sangue , Exercício Físico/fisiologia , Adolescente , Hormônio Adrenocorticotrópico/sangue , Artrite Juvenil/sangue , Criança , Receptor gp130 de Citocina/sangue , Desidroepiandrosterona/sangue , Progressão da Doença , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Interleucina-6/sangue , Complexo Antígeno L1 Leucocitário/sangue , Masculino , Medição da Dor , Sistema Hipófise-Suprarrenal/fisiopatologia , Receptores de Interleucina-6/sangue , Fatores de Tempo
7.
Blood Cells Mol Dis ; 63: 37-44, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28110136

RESUMO

Skeletal muscle function has been scarcely investigated in sickle cell disease (SCD) so that the corresponding impact of sickle hemoglobin is still a matter of debate. The purpose of this study was to investigate muscle force production and fatigability in SCD and to identify whether exercise intensity could have a modulatory effect. Ten homozygous sickle cell (HbSS), ten control (HbAA) and ten heterozygous (HbAS) mice were submitted to two stimulation protocols (moderate and intense) to assess force production and fatigability. We showed that specific maximal tetanic force was lower in HbSS mice as compared to other groups. At the onset of the stimulation period, peak force was reduced in HbSS and HbAS mice as compared to HbAA mice. Contrary to the moderate protocol, the intense stimulation protocol was associated with a larger decrease in peak force and rate of force development in HbSS mice as compared to HbAA and HbAS mice. These findings provide in vivo evidence of impaired muscle force production and resistance to fatigue in SCD. These changes are independent of muscle mass. Moreover, SCD is associated with muscle fatigability when exercise intensity is high.


Assuntos
Anemia Falciforme/fisiopatologia , Fadiga/fisiopatologia , Força Muscular , Músculo Esquelético/fisiopatologia , Animais , Camundongos , Fadiga Muscular , Condicionamento Físico Animal , Estimulação Física
8.
Clin Sci (Lond) ; 131(8): 775-790, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28250083

RESUMO

Background: Exercise and citrulline (CIT) are both regulators of muscle protein metabolism. However, the combination of both has been under-studied yet may have synergistic effects on muscle metabolism and performance. Methods: Three-month-old healthy male rats were randomly assigned to be fed ad libitum for 4 weeks with either a citrulline-enriched diet (1 g·kg-1·day-1) (CIT) or an isonitrogenous standard diet (by addition of nonessential amino acid) (Ctrl) and trained (running on treadmill 5 days·week-1) (ex) or not. Maximal endurance activity and body composition were assessed, and muscle protein metabolism (protein synthesis, proteomic approach) and energy metabolism [energy expenditure, mitochondrial metabolism] were explored. Results: Body composition was affected by exercise but not by CIT supplementation. Endurance training was associated with a higher maximal endurance capacity than sedentary groups (P<0.001), and running time was 14% higher in the CITex group than the Ctrlex group (139±4 min versus 122±6 min, P<0.05). Both endurance training and CIT supplementation alone increased muscle protein synthesis (by +27% and +33%, respectively, versus Ctrl, P<0.05) with an additive effect (+48% versus Ctrl, P<0.05). Mitochondrial metabolism was modulated by exercise but not directly by CIT supplementation. However, the proteomic approach demonstrated that CIT supplementation was able to affect energy metabolism, probably due to activation of pathways generating acetyl-CoA. Conclusion: CIT supplementation and endurance training in healthy male rats modulates both muscle protein and energy metabolisms, with synergic effects on an array of parameters, including performance and protein synthesis.


Assuntos
Citrulina/farmacologia , Suplementos Nutricionais , Metabolismo Energético/fisiologia , Proteínas Musculares/metabolismo , Condicionamento Físico Animal , Animais , Composição Corporal , Citrulina/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Resistência Física/efeitos dos fármacos , Resistência Física/fisiologia , Proteômica/métodos , Distribuição Aleatória , Ratos Wistar
9.
J Cell Sci ; 127(Pt 21): 4589-601, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179606

RESUMO

Synemin, a type IV intermediate filament (IF) protein, forms a bridge between IFs and cellular membranes. As an A-kinase-anchoring protein, it also provides temporal and spatial targeting of protein kinase A (PKA). However, little is known about its functional roles in either process. To better understand its functions in muscle tissue, we generated synemin-deficient (Synm(-) (/-)) mice. Synm(-) (/-) mice displayed normal development and fertility but showed a mild degeneration and regeneration phenotype in myofibres and defects in sarcolemma membranes. Following mechanical overload, Synm(-) (/-) mice muscles showed a higher hypertrophic capacity with increased maximal force and fatigue resistance compared with control mice. At the molecular level, increased remodelling capacity was accompanied by decreased myostatin (also known as GDF8) and atrogin (also known as FBXO32) expression, and increased follistatin expression. Furthermore, the activity of muscle-mass control molecules (the PKA RIIα subunit, p70S6K and CREB1) was increased in mutant mice. Finally, analysis of muscle satellite cell behaviour suggested that the absence of synemin could affect the balance between self-renewal and differentiation of these cells. Taken together, our results show that synemin is necessary to maintain membrane integrity and regulates signalling molecules during muscle hypertrophy.


Assuntos
Hipertrofia/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Desmina/genética , Desmina/metabolismo , Hipertrofia/patologia , Proteínas de Filamentos Intermediários/genética , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/ultraestrutura , Doenças Musculares/genética
10.
Ann Neurol ; 78(3): 387-400, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018399

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is linked to either contraction of D4Z4 repeats on chromosome 4 or to mutations in the SMCHD1 gene, both of which result in the aberrant expression of the transcription factor DUX4. However, it is still difficult to correlate these genotypes with the phenotypes observed in patients. Because we have recently shown that mice with disrupted Fat1 functions exhibit FSHD-like phenotypes, we have investigated the expression of the human FAT1 gene in FSHD. METHODS: We first analyzed FAT1 expression in FSHD adult muscles and determined whether FAT1 expression was driven by DUX4. We next determined FAT1 expression levels in 64 muscles isolated from 16 control fetuses. These data were further complemented with analysis of Fat1 expression in developing mouse embryos. RESULTS: We demonstrated that FAT1 expression is independent of DUX4. Moreover, we observed that (1) in control fetal human biopsies or in developing mouse embryos, FAT1 is expressed at lower levels in muscles that are affected at early stages of FSHD progression than in muscles that are affected later or are nonaffected; and (2) in adult muscle biopsies, FAT1 expression is lower in FSHD muscles compared to control muscles. INTERPRETATION: We propose a revised model for FSHD in which FAT1 levels might play a role in determining which muscles will exhibit early and late disease onset, whereas DUX4 may worsen the muscle phenotype.


Assuntos
Caderinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/metabolismo , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Adulto , Animais , Células Cultivadas , Feminino , Feto , Humanos , Masculino , Camundongos , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Quadríceps/embriologia
11.
Mol Ther ; 22(8): 1423-1433, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24861054

RESUMO

Myostatin regulates skeletal muscle size via the activin receptor IIB (ActRIIB). However, its effect on muscle energy metabolism and energy-dependent muscle function remains largely unexplored. This question needs to be solved urgently since various therapies for neuromuscular diseases based on blockade of ActRIIB signaling are being developed. Here, we show in mice, that 4-month pharmacological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myopathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB signaling downregulates porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Further, ActRIIB blockade reduces muscle capillarization, which further compounds the metabolic stress. We show that ActRIIB regulates key determinants of muscle metabolism, such as Pparß, Pgc1α, and Pdk4 thereby optimizing different components of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular disorders.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Fragmentos Fc das Imunoglobulinas/farmacologia , Músculos/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Animais , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Porinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
EMBO J ; 29(3): 643-54, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20033060

RESUMO

The alpha1S subunit has a dual function in skeletal muscle: it forms the L-type Ca(2+) channel in T-tubules and is the voltage sensor of excitation-contraction coupling at the level of triads. It has been proposed that L-type Ca(2+) channels might also be voltage-gated sensors linked to transcriptional activity controlling differentiation. By using the U7-exon skipping strategy, we have achieved long-lasting downregulation of alpha1S in adult skeletal muscle. Treated muscles underwent massive atrophy while still displaying significant amounts of alpha1S in the tubular system and being not paralysed. This atrophy implicated the autophagy pathway, which was triggered by neuronal nitric oxide synthase redistribution, activation of FoxO3A, upregulation of autophagy-related genes and autophagosome formation. Subcellular investigations showed that this atrophy was correlated with the disappearance of a minor fraction of alpha1S located throughout the sarcolemma. Our results reveal for the first time that this sarcolemmal fraction could have a role in a signalling pathway determining muscle anabolic or catabolic state and might act as a molecular sensor of muscle activity.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio/fisiologia , Morfogênese/genética , Músculo Esquelético/embriologia , Animais , Autofagia/genética , Sequência de Bases , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Força Muscular/genética , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Tamanho do Órgão/genética , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Distribuição Tecidual/genética
13.
Am J Pathol ; 182(5): 1509-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23465861

RESUMO

It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart.


Assuntos
Suscetibilidade a Doenças/patologia , Testes de Função Cardíaca , Coração/fisiopatologia , Contração Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal , Animais , Biomarcadores/metabolismo , Peso Corporal , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Tamanho do Órgão , Oxirredução , Função Ventricular/genética
14.
Am J Physiol Regul Integr Comp Physiol ; 307(4): R444-54, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24965795

RESUMO

Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn(-/-) mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn(-/-) mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn(-/-) mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn(-/-) mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.


Assuntos
Metabolismo Energético , Contração Muscular , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Resistência Física , Animais , Genótipo , Glicólise , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Fadiga Muscular , Miostatina/deficiência , Miostatina/genética , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fenótipo , Fosfopiruvato Hidratase/metabolismo , Corrida , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Muscle Nerve ; 48(1): 68-75, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625771

RESUMO

INTRODUCTION: The dystrophic features in hindlimb skeletal muscles of female mdx mice are unclear. METHODS: We analyzed force-generating capacity and force decline after lengthening contraction-induced damage (fragility). RESULTS: Young (6-month-old) female mdx mice displayed reduced force-generating capacity (-18%) and higher fragility (23% force decline) compared with female age-matched wild-type mice. These 2 dystrophic features were less accentuated in young female than in young male mdx mice (-32% and 42% force drop). With advancing age, force-generating capacity decreased and fragility increased in old (20 month) female mdx mice (-21% and 57% force decline), but they were unchanged in old male mdx mice. Moreover, estradiol treatment had no effect in old female mdx mice. CONCLUSIONS: Female gender-related factors mitigate dystrophic features in young but not old mdx mice. Further studies are warranted to identify the beneficial gender-related factor in dystrophic muscle.


Assuntos
Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/prevenção & controle , Distrofia Muscular Animal/fisiopatologia , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx
16.
Hum Mol Genet ; 19(11): 2191-207, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20207626

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)(8-13) expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.


Assuntos
Fibras Musculares de Contração Rápida/metabolismo , Atrofia Muscular/metabolismo , Distrofia Muscular Oculofaríngea/metabolismo , Distrofia Muscular Oculofaríngea/patologia , Fenótipo , Análise de Variância , Animais , Western Blotting , Perfilação da Expressão Gênica , Glicólise/fisiologia , Imuno-Histoquímica , Corpos de Inclusão Intranuclear/metabolismo , Corpos de Inclusão Intranuclear/patologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/patologia , Atrofia Muscular/etiologia , Distrofia Muscular Oculofaríngea/complicações , Proteína I de Ligação a Poli(A)/genética , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Proc Natl Acad Sci U S A ; 106(18): 7479-84, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19383783

RESUMO

Myostatin, a member of the TGF-beta family, has been identified as a powerful inhibitor of muscle growth. Absence or blockade of myostatin induces massive skeletal muscle hypertrophy that is widely attributed to proliferation of the population of muscle fiber-associated satellite cells that have been identified as the principle source of new muscle tissue during growth and regeneration. Postnatal blockade of myostatin has been proposed as a basis for therapeutic strategies to combat muscle loss in genetic and acquired myopathies. But this approach, according to the accepted mechanism, would raise the threat of premature exhaustion of the pool of satellite cells and eventual failure of muscle regeneration. Here, we show that hypertrophy in the absence of myostatin involves little or no input from satellite cells. Hypertrophic fibers contain no more myonuclei or satellite cells and myostatin had no significant effect on satellite cell proliferation in vitro, while expression of myostatin receptors dropped to the limits of detectability in postnatal satellite cells. Moreover, hypertrophy of dystrophic muscle arising from myostatin blockade was achieved without any apparent enhancement of contribution of myonuclei from satellite cells. These findings contradict the accepted model of myostatin-based control of size of postnatal muscle and reorient fundamental investigations away from the mechanisms that control satellite cell proliferation and toward those that increase myonuclear domain, by modulating synthesis and turnover of structural muscle fiber proteins. It predicts too that any benefits of myostatin blockade in chronic myopathies are unlikely to impose any extra stress on the satellite cells.


Assuntos
Hipertrofia , Músculo Esquelético/patologia , Miostatina/metabolismo , Células Satélites de Músculo Esquelético/patologia , Receptores de Activinas Tipo II/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Camundongos , Camundongos Mutantes , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miostatina/antagonistas & inibidores , Miostatina/genética , Regeneração/genética , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia
18.
J Histochem Cytochem ; 70(6): 415-426, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642249

RESUMO

We previously demonstrated that 8 weeks of moderate-intensity endurance training is safe and improves muscle function and characteristics of sickle cell disease (SCD) patients. Here, we investigated skeletal muscle satellite cells (SCs) in SCD patients and their responses to a training program. Fifteen patients followed the training program while 18 control patients maintained a normal lifestyle. Biopsies of the vastus lateralis muscle were performed before and after training. After training, the cross-sectional area and myonuclear content in type I fibers were slightly increased in the training patients compared to non-training patients. The SC pool was unchanged in type I fibers while it was slightly decreased in type II fibers in the training patients compared to non-training patients. No necrotic fibers were detected in patients before or after training. Therefore, the slight myonuclear accretion in type I fibers in trained SCD patients may highlight the contribution of SCs to training-induced slight type I fiber hypertrophy without expansion of the SC pool. The low training intensity and the short duration of training sessions could explain the low SC response to the training program. However, the lack of necrotic fibers suggests that the training program seemed to be safe for patients' muscle tissue.


Assuntos
Anemia Falciforme , Células Satélites de Músculo Esquelético , Anemia Falciforme/terapia , Exercício Físico/fisiologia , Humanos , Hipertrofia/patologia , Células Satélites de Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/fisiologia
19.
J Cachexia Sarcopenia Muscle ; 13(3): 1686-1703, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35277933

RESUMO

BACKGROUND: Cancer patients at advanced stages experience a severe depletion of skeletal muscle compartment together with a decrease in muscle function, known as cancer cachexia. Cachexia contributes to reducing quality of life, treatment efficiency, and lifespan of cancer patients. However, the systemic nature of the syndrome is poorly documented. Here, we hypothesize that glucocorticoids would be important systemic mediators of cancer cachexia. METHODS: To explore the role of glucocorticoids during cancer cachexia, biomolecular analyses were performed on several tissues (adrenal glands, blood, hypothalamus, liver, and skeletal muscle) collected from ApcMin/+ male mice, a mouse model of intestine and colon cancer, aged of 13 and 23 weeks, and compared with wild type age-matched C57BL/6J littermates. RESULTS: Twenty-three-week-old Apc mice recapitulated important features of cancer cachexia including body weight loss (-16%, P < 0.0001), muscle atrophy (gastrocnemius muscle: -53%, P < 0.0001), and weakness (-50% in tibialis anterior muscle force, P < 0.0001), increased expression of atrogens (7-fold increase in MuRF1 transcript level, P < 0.0001) and down-regulation of Akt-mTOR pathway (3.3-fold increase in 4EBP1 protein content, P < 0.0001), together with a marked transcriptional rewiring of hepatic metabolism toward an increased expression of gluconeogenic genes (Pcx: +90%, Pck1: +85%), and decreased expression of glycolytic (Slc2a2: -40%, Gk: -30%, Pklr: -60%), ketogenic (Hmgcs2: -55%, Bdh1: -80%), lipolytic/fatty oxidation (Lipe: -50%, Mgll: -60%, Cpt2: -60%, Hadh: -30%), and lipogenic (Acly: -30%, Acacb: -70%, Fasn: -45%) genes. The hypothalamic pituitary-adrenal axis was activated, as evidenced by the increase in the transcript levels of genes encoding corticotropin-releasing hormone in the hypothalamus (2-fold increase, P < 0.01), adrenocorticotropic hormone receptor (3.4-fold increase, P < 0.001), and steroid biosynthesis enzymes (Cyp21a1, P < 0.0001, and Cyp11b1, P < 0.01) in the adrenal glands, as well as by the increase in corticosterone level in the serum (+73%, P < 0.05), skeletal muscle (+17%, P < 0.001), and liver (+24%, P < 0.05) of cachectic 23-week-old Apc mice. A comparative transcriptional analysis with dexamethasone-treated C57BL/6J mice indicated that the activation of the hypothalamic-pituitary-adrenal axis in 23-week-old ApcMin/+ mice was significantly associated with the transcription of glucocorticoid-responsive genes in skeletal muscle (P < 0.05) and liver (P < 0.001). The transcriptional regulation of glucocorticoid-responsive genes was also observed in the gastrocnemius muscle of Lewis lung carcinoma tumour-bearing mice and in KPC mice (tibialis anterior muscle and liver). CONCLUSIONS: These findings highlight the role of the hypothalamic-pituitary-adrenal-glucocorticoid pathway in the transcriptional regulation of skeletal muscle catabolism and hepatic metabolism during cancer cachexia. They also provide the paradigm for the design of new therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Lewis , Sistema Hipófise-Suprarrenal , Idoso , Animais , Caquexia/genética , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Expressão Gênica , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Qualidade de Vida
20.
J Cachexia Sarcopenia Muscle ; 12(6): 2079-2090, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687171

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is caused by mutations leading to the aberrant expression of the DUX4 transcription factor in muscles. DUX4 was proposed to induce cell death, but the involvement of different death pathways is still discussed. A possible pro-apoptotic role of DUX4 was proposed, but as FSHD muscles are characterized by necrosis and inflammatory infiltrates, non-apoptotic pathways may be also involved. METHODS: We explored DUX4-mediated cell death by focusing on the role of one regulated necrosis pathway called necroptosis, which is regulated by RIPK3. We investigated the effect of necroptosis on cell death in vitro and in vivo experiments using RIPK3 inhibitors and a RIPK3-deficient transgenic mouse model. RESULTS: We showed in vitro that DUX4 expression causes a caspase-independent and RIPK3-mediated cell death in both myoblasts and myotubes. In vivo, RIPK3-deficient animals present improved body and muscle weights, a reduction of the aberrant activation of the DUX4 network genes, and an improvement of muscle histology. CONCLUSIONS: These results provide evidence for a role of RIPK3 in DUX4-mediated cell death and open new avenues of research.


Assuntos
Distrofia Muscular Facioescapuloumeral , Animais , Morte Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA