Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Dis ; 229(3): 898-907, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195204

RESUMO

BACKGROUND: The impact of gut microbiota and its metabolites on coronary artery disease (CAD) in people with human immunodeficiency virus (PWH) is unknown. Emerging evidence suggests that imidazole propionate (ImP), a microbial metabolite, is linked with cardiometabolic diseases. METHODS: Fecal samples from participants of the Copenhagen Comorbidity in HIV infection (COCOMO) study were processed for 16S rRNA sequencing and ImP measured with liquid chromatography-tandem mass spectrometry. CAD severity was investigated by coronary computed tomography-angiography, and participants grouped according to obstructive CAD (n = 60), nonobstructive CAD (n = 80), or no CAD (n = 114). RESULTS: Participants with obstructive CAD had a gut microbiota with lower diversity and distinct compositional shift, with increased abundance of Rumiococcus gnavus and Veillonella, known producers of ImP. ImP plasma levels were associated with this dysbiosis, and significantly elevated in participants with obstructive CAD. However, gut dysbiosis but not plasma ImP was independently associated with obstructive CAD after adjustment for traditional and HIV-related risk factors (adjusted odds ratio, 2.7; 95% confidence interval, 1.1-7.2; P = .048). CONCLUSIONS: PWH with obstructive CAD displays a distinct gut microbiota profile and increased circulating ImP plasma levels. Future studies should determine whether gut dysbiosis and related metabolites such as ImP are predictive of incident cardiovascular events.


Assuntos
Doença da Artéria Coronariana , Microbioma Gastrointestinal , Infecções por HIV , Imidazóis , Humanos , HIV , Infecções por HIV/complicações , Disbiose , RNA Ribossômico 16S/genética
2.
Angew Chem Int Ed Engl ; 63(14): e202318579, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38235602

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease of the bile ducts that has been associated with diverse metabolic carboxylic acids. Mass spectrometric techniques are the method of choice for their analysis. However, the broad investigation of this metabolite class remains challenging. Derivatization of carboxylic acids represents a strategy to overcome these limitations but available methods suffer from diverse analytical challenges. Herein, we have designed a novel strategy introducing 4-nitrophenyl-2H-azirine as a new chemoselective moiety for the first time for carboxylic acid metabolites. This moiety was selected as it rapidly forms a stable amide bond and also generates a new ketone, which can be analyzed by our recently developed quant-SCHEMA method specific for carbonyl metabolites. Optimization of this new method revealed a high reproducibility and robustness, which was utilized to validate 102 metabolic carboxylic acids using authentic synthetic standard conjugates in human plasma samples including nine metabolites that were newly detected. Using this sequential analysis of the carbonyl- and carboxylic acid-metabolomes revealed alterations of the ketogenesis pathway, which demonstrates the vast benefit of our unique methodology. We anticipate that the developed azirine moiety with rapid functional group transformation will find broad application in diverse chemical biology research fields.


Assuntos
Azirinas , Hepatopatias , Nitrofenóis , Humanos , Indicadores e Reagentes , Reprodutibilidade dos Testes , Metaboloma , Ácidos Carboxílicos/química , Metabolômica/métodos
5.
Genome Med ; 16(1): 27, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331891

RESUMO

BACKGROUND: Interactions between the gut microbiota, diet, and host metabolism contribute to the development of cardiovascular disease, but a firm link between disease-specific gut microbiota alterations and circulating metabolites is lacking. METHODS: We performed shot-gun sequencing on 235 samples from 166 HF patients and 69 healthy control samples. Separate plasma samples from healthy controls (n = 53) were used for the comparison of imidazole propionate (ImP) levels. Taxonomy and functional pathways for shotgun sequencing data was assigned using MetaPhlAn3 and HUMAnN3 pipelines. RESULTS: Here, we show that heart failure (HF) is associated with a specific compositional and functional shift of the gut microbiota that is linked to circulating levels of the microbial histidine-derived metabolite ImP. Circulating ImP levels are elevated in chronic HF patients compared to controls and associated with HF-related gut microbiota alterations. Contrary to the microbiota composition, ImP levels provide insight into etiology and severity of HF and also associate with markers of intestinal permeability and systemic inflammation. CONCLUSIONS: Our findings establish a connection between changes in the gut microbiota, the presence, etiology, and severity of HF, and the gut-microbially produced metabolite ImP. While ImP appears promising as a circulating biomarker reflecting gut dysbiosis related to HF, further studies are essential to demonstrate its causal or contributing role in HF pathogenesis. TRIAL REGISTRATION: NCT02637167, registered December 22, 2015.


Assuntos
Insuficiência Cardíaca , Microbiota , Humanos , Disbiose , Insuficiência Cardíaca/metabolismo , Imidazóis , Gravidade do Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA