Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 135: 17-23, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27668322

RESUMO

Artificial soil (AS) is used in soil ecotoxicology as a test medium or reference matrix. AS is prepared according to standard OECD/ISO protocols and components of local sources are usually used by laboratories. This may result in significant inter-laboratory variations in AS properties and, consequently, in the fate and bioavailability of tested chemicals. In order to reveal the extent and sources of variations, the batch equilibrium method was applied to measure the sorption of 2 model compounds (phenanthrene and cadmium) to 21 artificial soils from different laboratories. The distribution coefficients (Kd) of phenanthrene and cadmium varied over one order of magnitude: from 5.3 to 61.5L/kg for phenanthrene and from 17.9 to 190L/kg for cadmium. Variations in phenanthrene sorption could not be reliably explained by measured soil properties; not even by the total organic carbon (TOC) content which was expected. Cadmium logKd values significantly correlated with cation exchange capacity (CEC), pHH2O and pHKCl, with Pearson correlation coefficients of 0.62, 0.80, and 0.79, respectively. CEC and pHH2O together were able to explain 72% of cadmium logKd variability in the following model: logKd=0.29pHH2O+0.0032 CEC -0.53. Similarly, 66% of cadmium logKd variability could be explained by CEC and pHKCl in the model: logKd=0.27pHKCl+0.0028 CEC -0.23. Variable cadmium sorption in differing ASs could be partially treated with these models. However, considering the unpredictable variability of phenanthrene sorption, a more reliable solution for reducing the variability of ASs from different laboratories would be better harmonization of AS preparation and composition.


Assuntos
Cádmio/análise , Modelos Teóricos , Fenantrenos/análise , Poluentes do Solo/análise , Solo/química , Solo/normas , Adsorção , Cádmio/química , Fenantrenos/química , Poluentes do Solo/química
2.
Environ Sci Technol ; 49(13): 7657-65, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26053501

RESUMO

This paper reports the first study applying a triple-isotope approach for source apportionment of polycyclic aromatic hydrocarbons (PAHs). The (13)C/(12)C, (14)C/(12)C, and (2)H/(1)H isotope ratios of PAHs were determined in forest soils from mountainous areas of the Czech Republic, European Union. Statistical modeling applying a Bayesian Markov chain Monte Carlo (MCMC) framework to the environmental triple isotope PAH data and an end-member PAH isotope database allowed comprehensive accounting of uncertainties and quantitative constraints on the PAH sources among biomass combustion, liquid fossil fuel combustion, and coal combustion at low and high temperatures. The results suggest that PAHs in this central European region had a clear predominance of coal combustion sources (75 ± 6%; uncertainties represent 1 SD), mainly coal pyrolysis at low temperature (∼650 °C; 61 ± 8%). Combustion of liquid fossil fuels and biomass represented 16 ± 3 and 9 ± 3% of the total PAH burden (∑PAH14), respectively. Although some soils were located close to potential PAH point sources, the source distribution was within a narrow range throughout the region. These observation-based top-down constraints on sources of environmental PAHs provide a reference for both improved bottom-up emission inventories and guidance for efforts to mitigate PAH emissions.


Assuntos
Deutério/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Teorema de Bayes , Isótopos de Carbono , Simulação por Computador , República Tcheca , Geografia , Cadeias de Markov , Método de Monte Carlo , Poluentes do Solo/análise
3.
Environ Sci Technol ; 45(23): 10061-7, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22070465

RESUMO

We measured the kinetics of ozonation reaction of 1,1-diphenylethylene (DPE) in artificial snow, produced by shock freezing of DPE aqueous solutions sprayed into liquid nitrogen. It was demonstrated that most of the reactant molecules are in direct (productive) contact with gaseous ozone, thus the technique produces snow with organic molecules largely ejected to the surface of snow grains. The kinetic data were used to evaluate the snow specific surface area (∼70 cm(2) g(-1)). This number is a measure of the availability of the molecules on the surface for chemical reaction with gaseous species. The experimental results were consistent with the Langmuir-Hinshelwood type reaction mechanism. DPE represents environmentally relevant compounds such as alkenes which can react with atmospheric ozone, and are relatively abundant in natural snow. For typical atmospheric ozone concentrations in polar areas (20 ppbv), we estimated that half-life of DPE on the surface of snow grains is ∼5 days at submonolayer coverages and -15 °C.


Assuntos
Ozônio/química , Neve/química , Estirenos/química , Estrutura Molecular
4.
J Hazard Mater ; 264: 514-20, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24239257

RESUMO

Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with (14)C-phenanthrene and (14)C-lindane, and the total residues, fractions extractable by hydroxypropyl-ß-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability.


Assuntos
Hexaclorocicloexano/química , Fenantrenos/química , Poluentes do Solo/química , Solo/química , Radioisótopos de Carbono , Hexaclorocicloexano/metabolismo , Fenantrenos/metabolismo , Poluentes do Solo/metabolismo
5.
Environ Pollut ; 163: 1-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22325424

RESUMO

The study is focused on artificial soil which is supposed to be a standardized "soil like" medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3-89%) was observed. The extractability was strongly related (R(2)=0.87) to total organic carbon content, 0.1-2mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%)=1.35*sand (%)-0.77*TOC (%)2+0.27*HA/FA.


Assuntos
Cromatografia com Fluido Supercrítico , Fenantrenos/química , Poluentes do Solo/química , Solo/química , Adsorção , Fenantrenos/análise , Poluentes do Solo/análise
6.
Environ Sci Pollut Res Int ; 19(6): 1953-62, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22767293

RESUMO

Concentrations of selected organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are reported in air and surface soil in an extensive spatial survey across Azerbaijan, a country bordering the Caspian Sea with a history of OCP production and extensive use. Polyurethane foam disc passive air samplers (PAS) were deployed during October-November 2008 with soil samples collected in July 2009. Levels of Σ(7)PCB in ambient air were generally low (mean of 0.046 ng m(-3), n = 13) and comparable to concentrations reported in countries within Eastern Europe and similar to or lower than concentrations reported in urban air in the UK and other western countries. Surprisingly, PCB concentrations in rural/background soil fell below the method detection limits at most sites, although concentrations were 0.209 and 0.071 ng Σ(7)PCB g(-1) dry weight (dw) for two urban sites, again comparable to PCB levels measured at background sites in Europe. Levels of α-HCH, ß-HCH, γ-HCH and p,p'-DDT/E were elevated in ambient air across Azerbaijan in comparison to PAS-derived concentrations reported elsewhere, with concentrations of α-HCH in air ranging from 0.085 to 2.699 ng m(-3) and p,p'-DDE, 0.037-2.290 ng m(-3). High concentrations of OCPs occurred at several of the urban sites and at sites in proximity to old pesticide storage facilities with concentrations in soil >0.1 µg g(-1) dw for p,p'-DDE and p,p'-DDT at several sites. The ratio of p,p'-DDT/p,p'-DDE was close to unity in the soil at these sites, but elsewhere, the ratio was <1, indicating a weathered DDT pattern, which was also reflected in the air at all sites. A fugacity approach revealed the strong likelihood of net soil-to-air transfer at the majority of sites for all OCPs. The calculated annual fluxes or loading to the atmosphere from a rural/agricultural area (representing land as vineyards and cotton cultivation) were estimated to be on the order of ≈10-100 kg year(-1) for the HCH isomers (including the ß -isomer) and p,p'-DDE. The high levels of OCPs in soils, particularly in the vicinity of obsolete-pesticide storage facilities and at select urban sites are of concern and warrant regular monitoring activities and the development of containment or mitigation strategies.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Poluentes do Solo/análise , Ar/análise , Azerbaijão , Monitoramento Ambiental , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA