Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Nat Prod ; 83(2): 296-304, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32058711

RESUMO

We report NMR- and MS-based structural characterizations of siderophores and related compounds from Beauveria bassiana (Balsamo-Crivelli) Vuillemin, including ten new chemical entities (2-4, 6-9, 11-12, and 15) and five known compounds, (1, 5, 10, 13, and 14). The siderophore mixture from ARSEF strain #2680 included two compounds in which N5-mevalonyl-N5-hydroxyornithine replaces both (2) or one (3) of the N5-anhydromevalonyl-N5-hydroxyornithine units of dimerumic acid (1). Mevalonolactone (14) was present as a degradation product of 2 and 3. ARSEF #2860 also produced compounds that have mannopyranose (5, 6) or 4-O-methyl-mannopyranose units (4, 7), two compounds (8, 9) that can be rationalized as 4-O-methyl-mannopyranosyl analogues of the esterifying acid moieties of metachelins A and B, respectively, and two probable decomposition products of 1, a nitro compound (11) and a formate (12). Beauverichelin A (15), a coprogen-type siderophore that represents the di-4-O-methyl-mannopyranosyl analogue of metachelin A, was detected in crude extracts of ARSEF #2860, but only in trace amounts. ARSEF strains #252 and #1955 yielded beauverichelin A in quantities that were sufficient for NMR analysis. Only the di- (1-7) and trihydroxamate (15) siderophores showed iron-binding activity in the CAS assay and, when ferrated, showed strong ESIMS signals consistent with 1:1 ligand/iron complexes.


Assuntos
Beauveria/química , Sideróforos/química , Animais , Dicetopiperazinas/química , Ácidos Hidroxâmicos/química , Ferro/química , Ferro/metabolismo , Estrutura Molecular , Nitrocompostos/química , Sideróforos/isolamento & purificação
2.
J Proteome Res ; 15(5): 1670-84, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27052409

RESUMO

This study aimed to identify the aluminum (Al)-induced proteomes in tomato (Solanum lycopersicum, "Micro-Tom") after long-term exposure to the stress factor. Plants were treated in Magnavaca's solution (pH 4.5) supplemented with 7.5 µM Al(3+) ion activity over a 4 month period beginning at the emergence of flower buds and ending when the lower mature leaves started to turn yellow. Proteomes were identified using a 8-plex isobaric tags for relative and absolute quantification (iTRAQ) labeling strategy followed by a two-dimensional (high- and low-pH) chromatographic separation and final generation of tandem mass spectrometry (MS/MS) spectra of tryptic peptides on an LTQ-Orbitrap Elite mass spectrometer. Principal component analysis revealed that the Al-treatment had induced systemic alterations in the proteomes from roots and leaves but not seed tissues. The significantly changed root proteins were shown to have putative functions in Al(3+) ion uptake and transportation, root development, and a multitude of other cellular processes. Changes in the leaf proteome indicate that the light reaction centers of photosynthetic machinery are the primary targets of Al-induced stress. Embryo and seed-coat tissues derived from Al-treated plants were enriched with stress proteins. The biological processes involving these Al-induced proteins concur with the physiological and morphological changes, such as the disturbance of mineral homeostasis (higher contents of Al, P, and Fe and reduced contents of S, Zn, and Mn in Al-treated compared to nontreated plants) in roots and smaller sizes of roots and the whole plants. More importantly, the identified significant proteins might represent a molecular mechanism for plants to develop toward establishing the Al tolerance and adaptation mechanism over a long period of stress treatment.


Assuntos
Adaptação Fisiológica , Alumínio/farmacologia , Proteoma/efeitos dos fármacos , Solanum lycopersicum/química , Alumínio/farmacocinética , Solanum lycopersicum/embriologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Sementes/efeitos dos fármacos , Sementes/metabolismo
3.
Mol Cell Proteomics ; 13(2): 566-79, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24198434

RESUMO

Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with different affinities can be particularly effective. A multi-lectin approach has also been reported to provide a significant benefit for the analysis of plant N-glycoproteins; however, it has yet to be determined whether certain lectins, or combinations of lectins are optimal for plant N-glycoproteome profiling; or whether specific lectins show preferential association with particular N-glycosylation sites or N-glycan structures. We describe here a comparative study of three mannose-binding lectins, concanavalin A, snowdrop lectin, and lentil lectin, to profile the N-glycoproteome of mature green stage tomato (Solanum lycopersicum) fruit pericarp. Through coupling lectin affinity chromatography with a shotgun proteomics strategy, we identified 448 putative N-glycoproteins, whereas a parallel lectin affinity chromatography plus hydrophilic interaction chromatography analysis revealed 318 putative N-glycosylation sites on 230 N-glycoproteins, of which 100 overlapped with the shotgun analysis, as well as 17 N-glycan structures. The use of multiple lectins substantially increased N-glycoproteome coverage and although there were no discernible differences in the structures of N-glycans, or the charge, isoelectric point (pI) or hydrophobicity of the glycopeptides that differentially bound to each lectin, differences were observed in the amino acid frequency at the -1 and +1 subsites of the N-glycosylation sites. We also demonstrated an alternative and complementary in planta recombinant expression strategy, followed by affinity MS analysis, to identify the putative N-glycan structures of glycoproteins whose abundance is too low to be readily determined by a shotgun approach, and/or combined with deglycosylation for predicted deamidated sites, using a xyloglucan-specific endoglucanase inhibitor protein as an example.


Assuntos
Glicoproteínas/metabolismo , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Sequência de Carboidratos , Cromatografia de Afinidade , Glicoproteínas/análise , Glicosilação , Solanum lycopersicum/química , Modelos Biológicos , Dados de Sequência Molecular , Lectinas de Plantas/análise , Proteínas de Plantas/análise , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteoma/metabolismo , Proteômica
4.
Int J Mol Sci ; 17(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490537

RESUMO

Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a "sandwich" system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil drought conditions (Data are available via ProteomeXchange with identifier PXD004675).


Assuntos
Secas , Panicum/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Panicum/genética , Panicum/fisiologia , Proteínas de Plantas/genética , Proteômica , Plântula/genética , Transdução de Sinais/genética
5.
J Proteome Res ; 13(4): 2094-108, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24588548

RESUMO

Biotypes of aphids and many other insect pests are defined based on the phenotypic response of host plants to the insect pest without considering their intrinsic characteristics and genotypes. Plant breeders have spent considerable effort developing aphid-resistant, small-grain varieties to limit insecticide control of the greenbug, Schizaphis graminum. However, new S. graminum biotypes frequently emerge that break resistance. Mechanisms of virulence on the aphid side of the plant-insect interaction are not well understood. S. graminum biotype H is highly virulent on most small grain varieties. This characteristic makes biotype H ideal for comparative proteomics to investigate the basis of biotype virulence in aphids. In this study, we used comparative proteomics to identify protein expression differences associated with virulence. Aphid proteins involved in the tricarboxylic acid cycle, immune system, cell division, and antiapoptosis pathways were found to be up-regulated in biotype H relative to other biotypes. Proteins from the bacterial endosymbiont of aphids were also differentially expressed in biotype H. Guided by the proteome results, we tested whether biotype H had a fitness advantage compared with other S. graminum biotypes and found that biotype H had a higher reproductive fitness as compared with two other biotypes on a range of different wheat germplasms. Finally, we tested whether aphid genetics can be used to further dissect the genetic mechanisms of biotype virulence in aphids. The genetic data showed that sexual reproduction is a source of biotypic variation observed in S. graminum.


Assuntos
Afídeos/fisiologia , Afídeos/patogenicidade , Proteínas de Insetos/análise , Proteoma/análise , Proteoma/fisiologia , Animais , Afídeos/genética , Afídeos/microbiologia , Buchnera , Interações Hospedeiro-Parasita , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Poaceae/parasitologia , Proteoma/genética , Proteoma/metabolismo , Simbiose
6.
Proteomics ; 11(8): 1530-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21381198

RESUMO

The isolation and analysis of glycoproteins by coupling lectin affinity chromatography with MS has emerged as a powerful strategy to study the glycoproteome of mammalian cells. However, this approach has not been used extensively for the analysis of plant glycoproteins. As with all eukaryotes, N-glycosylation is a common post-translational modification for plant proteins traveling through the secretory pathway. Many such proteins are destined for the cell wall, or apoplast, where they play important roles in processes such as modifying cell wall structure, sugar metabolism, signaling, and defense against pathogens. Here, we describe a strategy to enrich for and identify secreted plant proteins based on affinity chromatography using the lectin Concanavalin A and two-dimensional liquid chromatography, together with matrix-assisted laser desorption/ionization MS analysis. The value of this approach is illustrated through the characterization of glycoproteins that are expressed in ripe tomato (Solanum lycopersicum) fruit, a developmental stage that is fundamentally linked with significant changes in cell wall structure and composition. This glycoprotein trap strategy allowed the isolation of a sub-proteome with an extremely high proportion of proteins that are predicted to be resident in the cell wall or secretory pathway, and the identification of new putative cell wall proteins.


Assuntos
Cromatografia de Afinidade/métodos , Glicoproteínas/análise , Proteínas de Plantas/análise , Proteoma/análise , Solanum lycopersicum/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Parede Celular/química , Concanavalina A/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteoma/metabolismo , Transdução de Sinais
7.
J Exp Bot ; 61(13): 3759-71, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20571035

RESUMO

The aerial organs of plants are covered by the cuticle, a polyester matrix of cutin and organic solvent-soluble waxes that is contiguous with the polysaccharide cell wall of the epidermis. The cuticle is an important surface barrier between a plant and its environment, providing protection against desiccation, disease, and pests. However, many aspects of the mechanisms of cuticle biosynthesis, assembly, and restructuring are entirely unknown. To identify candidate proteins with a role in cuticle biogenesis, a surface protein extract was obtained from tomato (Solanum lycopersicum) fruits by dipping in an organic solvent and the constituent proteins were identified by several complementary fractionation strategies and two mass spectrometry techniques. Of the approximately 200 proteins that were identified, a subset is potentially involved in the transport, deposition, or modification of the cuticle, such as those with predicted lipid-associated protein domains. These include several lipid-transfer proteins, GDSL-motif lipase/hydrolase family proteins, and an MD-2-related lipid recognition domain-containing protein. The epidermal-specific transcript accumulation of several of these candidates was confirmed by laser-capture microdissection and quantitative reverse transcription-PCR (qRT-PCR), together with their expression during various stages of fruit development. This indicated a complex pattern of cuticle deposition, and models for cuticle biogenesis and restructuring are discussed.


Assuntos
Lipídeos de Membrana/biossíntese , Proteínas de Plantas/metabolismo , Proteoma , Solanum lycopersicum/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Frutas/enzimologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/química , Solanum lycopersicum/classificação , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Espectrometria de Massas , Lipídeos de Membrana/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Ceras/metabolismo
8.
PLoS One ; 15(10): e0239771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33022020

RESUMO

Huanglongbing (HLB) is a deadly, incurable citrus disease putatively caused by the unculturable bacterium, 'Candidatus Liberibacter asiaticus' (CLas), and transmitted by Diaphorina citri. Prior studies suggest D. citri transmits CLas in a circulative and propagative manner; however, the precise interactions necessary for CLas transmission remain unknown, and the impact of insect sex on D. citri-CLas interactions is poorly understood despite reports of sex-dependent susceptibilities to CLas. We analyzed the transcriptome, proteome, metabolome, and microbiome of male and female adult D. citri reared on healthy or CLas-infected Citrus medica to determine shared and sex-specific responses of D. citri and its endosymbionts to CLas exposure. More sex-specific than shared D. citri responses to CLas were observed, despite there being no difference between males and females in CLas density or relative abundance. CLas exposure altered the abundance of proteins involved in immunity and cellular and oxidative stress in a sex-dependent manner. CLas exposure impacted cuticular proteins and enzymes involved in chitin degradation, as well as energy metabolism and abundance of the endosymbiont 'Candidatus Profftella armatura' in both sexes similarly. Notably, diaphorin, a toxic Profftella-derived metabolite, was more abundant in both sexes with CLas exposure. The responses reported here resulted from a combination of CLas colonization of D. citri as well as the effect of CLas infection on C. medica. Elucidating these impacts on D. citri and their endosymbionts contributes to our understanding of the HLB pathosystem and identifies the responses potentially critical to limiting or promoting CLas acquisition and propagation in both sexes.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Rhizobiaceae/patogenicidade , Simbiose/fisiologia , Animais , Citrus/metabolismo , Citrus/fisiologia , Feminino , Hemípteros/metabolismo , Hemípteros/fisiologia , Insetos Vetores/metabolismo , Insetos Vetores/fisiologia , Masculino , Metaboloma/fisiologia , Microbiota/fisiologia , Estresse Oxidativo/fisiologia , Proteoma/metabolismo , Transcriptoma/fisiologia
9.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 4): 445-449, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765742

RESUMO

The title compound C22H39NO9·CH3OH [systematic name: (S)-N-((S)-{(2S,4R,6R)-6-[(S)-2,3-di-hydroxy-prop-yl]-4-hy-droxy-5,5-di-methyl-tetra-hydro-2H-pyran-2-yl}(hy-droxy)meth-yl)-2-hy-droxy-2-[(2R,5R,6R)-2-meth-oxy-5,6-dimeth-yl-4-methyl-ene-tetra-hydro-2H-pyran-2-yl]acetamide methanol monosolvate], was isolated from the Asian citrus psyllid, Diaphorina citri Kuwayama, and crystallizes in the space group P21. 'Candidatus Profftella armatura' a bacterial endosymbiont of D. citri, biosynthesizes diaphorin, which is a hybrid polyketide-nonribosomal peptide comprising two highly substituted tetra-hydro-pyran rings joined by an N-acyl aminal bridge [Nakabachi et al. (2013 ▸). Curr. Biol.23, 1478-1484]. The crystal structure of the title compound establishes the complete relative configuration of diaphorin, which agrees at all nine chiral centers with the structure of the methanol monosolvate of the di-p-bromo-benzoate derivative of pederin, a biogenically related compound whose crystal structure was reported previously [Furusaki et al. (1968 ▸). Tetra-hedron Lett.9, 6301-6304]. Thus, the absolute configuration of diaphorin is proposed by analogy to that of pederin.

10.
Proteomes ; 5(1)2017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28248258

RESUMO

The tomato (Solanum lycopersicum) ripening process from mature green (MG) to turning and then to red stages is accompanied by the occurrences of physiological and biochemical reactions, which ultimately result in the formation of the flavor, color and texture of ripe fruits. The two trivalent metal ions Al3+ and La3+ are known to induce different levels of phytotoxicity in suppressing root growth. This paper aims to understand the impacts of these two metal ions on tomato fruit proteomes. Tomato 'Micro-Tom' plants were grown in a hydroponic culture system supplemented with 50 µM aluminum sulfate (Al2 (SO4)3.18H2O) for Al3+ or La2(SO4)3 for La3+. Quantitative proteomics analysis, using isobaric tags for relative and absolute quantitation, were performed for fruits at MG, turning and red stages. Results show that in MG tomatoes, proteins involved in protein biosynthesis, photosynthesis and primary carbohydrate metabolisms were at a significantly lower level in Al-treated compared to La-treated plants. For the turning and red tomatoes, only a few proteins of significant differences between the two metal treatments were identified. Results from this study indicate that compared to La3+, Al3+ had a greater influence on the basic biological activities in green tomatoes, but such an impact became indistinguishable as tomatoes matured into the late ripening stages.

11.
Proteomes ; 2(2): 169-190, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28250376

RESUMO

Aluminum (Al) toxicity is a major constraint to plant growth and crop yield in acid soils. Tomato cultivars are especially susceptible to excessive Al3+ accumulated in the root zone. In this study, tomato plants were grown in a hydroponic culture system supplemented with 50 µM AlK(SO4)2. Seeds harvested from Al-treated plants contained a significantly higher Al content than those grown in the control hydroponic solution. In this study, these Al-enriched tomato seeds (harvested from Al-treated tomato plants) were germinated in 50 µM AlK(SO4)2 solution in a homopiperazine-1,4-bis(2-ethanesulfonic acid) buffer (pH 4.0), and the control solution which contained the buffer only. Proteomes of radicles were analyzed quantitatively by mass spectrometry employing isobaric tags for relative and absolute quantitation (iTRAQ®). The proteins identified were assigned to molecular functional groups and cellular metabolic pathways using MapMan. Among the proteins whose abundance levels changed significantly were: a number of transcription factors; proteins regulating gene silencing and programmed cell death; proteins in primary and secondary signaling pathways, including phytohormone signaling and proteins for enhancing tolerance to abiotic and biotic stress. Among the metabolic pathways, enzymes in glycolysis and fermentation and sucrolytic pathways were repressed. Secondary metabolic pathways including the mevalonate pathway and lignin biosynthesis were induced. Biological reactions in mitochondria seem to be induced due to an increase in the abundance level of mitochondrial ribosomes and enzymes in the TCA cycle, electron transport chains and ATP synthesis.

12.
J Biol Chem ; 284(1): 354-362, 2009 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-19001374

RESUMO

Half-molecule ATP-binding cassette transporters of the HMT-1 (heavy metal tolerance factor 1) subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans, and Chlamydomonas reinhardtii. Based on studies of S. pombe, it has been proposed that SpHMT-1 transports heavy metal.phytochelatin (PC) complexes into the vacuolysosomal compartment. PCs are glutathione derivatives synthesized by PC synthases (PCS) in plants, fungi, and C. elegans in response to heavy metals. Our previous studies in C. elegans, however, suggested that HMT-1 and PCS-1 do not necessarily act in concert in metal detoxification. To further explore this inconsistency, we have gone on to test whether DmHMT-1, an HMT-1 from a new source, Drosophila, whose genome lacks PCS homologs, functions in heavy metal detoxification. In so doing, we show that heterologously expressed DmHMT-1 suppresses the Cd2+ hypersensitivity of S. pombe hmt-1 mutants and localizes to the vacuolar membrane but does not transport Cd.PC complexes. Crucially, similar analyses of S. pombe hmt-1 mutants extend this finding to show that SpHMT-1 itself either does not transport Cd.PC complexes or is not the principal Cd.PC/apoPC transporter. Consistent with this discovery and with our previous suggestion that HMT-1 and PCS-1 do not operate in a simple linear metal detoxification pathway, we demonstrate that, unlike PCS-deficient cells, which are hypersensitive to several heavy metals, SpHMT-1-deficient cells are hypersensitive to Cd2+, but not to Hg2+ or As3+. These findings significantly change our current understanding of the function of HMT-1 proteins and invoke a PC-independent role for these transporters in Cd2+ detoxification.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cádmio/farmacologia , Proteínas de Drosophila/metabolismo , Farmacorresistência Fúngica/fisiologia , Fitoquelatinas/metabolismo , Schizosaccharomyces/metabolismo , Vacúolos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Drosophila , Proteínas de Drosophila/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Teste de Complementação Genética , Dados de Sequência Molecular , Fitoquelatinas/genética , Schizosaccharomyces/genética , Vacúolos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA