Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cochrane Database Syst Rev ; 5: CD000031, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37230961

RESUMO

BACKGROUND: The pharmacological profiles and mechanisms of antidepressants are varied. However, there are common reasons why they might help people to stop smoking tobacco: nicotine withdrawal can produce short-term low mood that antidepressants may relieve; and some antidepressants may have a specific effect on neural pathways or receptors that underlie nicotine addiction. OBJECTIVES: To assess the evidence for the efficacy, harms, and tolerability of medications with antidepressant properties in assisting long-term tobacco smoking cessation in people who smoke cigarettes. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group Specialised Register, most recently on 29 April 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) in people who smoked, comparing antidepressant medications with placebo or no pharmacological treatment, an alternative pharmacotherapy, or the same medication used differently. We excluded trials with fewer than six months of follow-up from efficacy analyses. We included trials with any follow-up length for our analyses of harms. DATA COLLECTION AND ANALYSIS: We extracted data and assessed risk of bias using standard Cochrane methods. Our primary outcome measure was smoking cessation after at least six months' follow-up. We used the most rigorous definition of abstinence available in each trial, and biochemically validated rates if available. Our secondary outcomes were harms and tolerance outcomes, including adverse events (AEs), serious adverse events (SAEs), psychiatric AEs, seizures, overdoses, suicide attempts, death by suicide, all-cause mortality, and trial dropouts due to treatment. We carried out meta-analyses where appropriate. MAIN RESULTS: We included a total of 124 studies (48,832 participants) in this review, with 10 new studies added to this update version. Most studies recruited adults from the community or from smoking cessation clinics; four studies focused on adolescents (with participants between 12 and 21 years old). We judged 34 studies to be at high risk of bias; however, restricting analyses only to studies at low or unclear risk of bias did not change clinical interpretation of the results.  There was high-certainty evidence that bupropion increased smoking cessation rates when compared to placebo or no pharmacological treatment (RR 1.60, 95% CI 1.49 to 1.72; I2 = 16%; 50 studies, 18,577 participants). There was moderate-certainty evidence that a combination of bupropion and varenicline may have resulted in superior quit rates to varenicline alone (RR 1.21, 95% CI 0.95 to 1.55; I2 = 15%; 3 studies, 1057 participants). However, there was insufficient evidence to establish whether a combination of bupropion and nicotine replacement therapy (NRT) resulted in superior quit rates to NRT alone (RR 1.17, 95% CI 0.95 to 1.44; I2 = 43%; 15 studies, 4117 participants; low-certainty evidence). There was moderate-certainty evidence that participants taking bupropion were more likely to report SAEs than those taking placebo or no pharmacological treatment. However, results were imprecise and the CI also encompassed no difference (RR 1.16, 95% CI 0.90 to 1.48; I2 = 0%; 23 studies, 10,958 participants). Results were also imprecise when comparing SAEs between people randomised to a combination of bupropion and NRT versus NRT alone (RR 1.52, 95% CI 0.26 to 8.89; I2 = 0%; 4 studies, 657 participants) and randomised to bupropion plus varenicline versus varenicline alone (RR 1.23, 95% CI 0.63 to 2.42; I2 = 0%; 5 studies, 1268 participants). In both cases, we judged evidence to be of low certainty. There was high-certainty evidence that bupropion resulted in more trial dropouts due to AEs than placebo or no pharmacological treatment (RR 1.44, 95% CI 1.27 to 1.65; I2 = 2%; 25 studies, 12,346 participants). However, there was insufficient evidence that bupropion combined with NRT versus NRT alone (RR 1.67, 95% CI 0.95 to 2.92; I2 = 0%; 3 studies, 737 participants) or bupropion combined with varenicline versus varenicline alone (RR 0.80, 95% CI 0.45 to 1.45; I2 = 0%; 4 studies, 1230 participants) had an impact on the number of dropouts due to treatment. In both cases, imprecision was substantial (we judged the evidence to be of low certainty for both comparisons). Bupropion resulted in inferior smoking cessation rates to varenicline (RR 0.73, 95% CI 0.67 to 0.80; I2 = 0%; 9 studies, 7564 participants), and to combination NRT (RR 0.74, 95% CI 0.55 to 0.98; I2 = 0%; 2 studies; 720 participants). However, there was no clear evidence of a difference in efficacy between bupropion and single-form NRT (RR 1.03, 95% CI 0.93 to 1.13; I2 = 0%; 10 studies, 7613 participants). We also found evidence that nortriptyline aided smoking cessation when compared with placebo (RR 2.03, 95% CI 1.48 to 2.78; I2 = 16%; 6 studies, 975 participants), and some evidence that bupropion resulted in superior quit rates to nortriptyline (RR 1.30, 95% CI 0.93 to 1.82; I2 = 0%; 3 studies, 417 participants), although this result was subject to imprecision. Findings were sparse and inconsistent as to whether antidepressants, primarily bupropion and nortriptyline, had a particular benefit for people with current or previous depression. AUTHORS' CONCLUSIONS: There is high-certainty evidence that bupropion can aid long-term smoking cessation. However, bupropion may increase SAEs (moderate-certainty evidence when compared to placebo/no pharmacological treatment). There is high-certainty evidence that people taking bupropion are more likely to discontinue treatment compared with people receiving placebo or no pharmacological treatment. Nortriptyline also appears to have a beneficial effect on smoking quit rates relative to placebo, although bupropion may be more effective. Evidence also suggests that bupropion may be as successful as single-form NRT in helping people to quit smoking, but less effective than combination NRT and varenicline. In most cases, a paucity of data made it difficult to draw conclusions regarding harms and tolerability. Further studies investigating the efficacy of bupropion versus placebo are unlikely to change our interpretation of the effect, providing no clear justification for pursuing bupropion for smoking cessation over other licensed smoking cessation treatments; namely, NRT and varenicline. However, it is important that future studies of antidepressants for smoking cessation measure and report on harms and tolerability.


Assuntos
Abandono do Hábito de Fumar , Adolescente , Adulto , Criança , Humanos , Adulto Jovem , Antidepressivos/efeitos adversos , Bupropiona/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Nortriptilina/efeitos adversos , Abandono do Hábito de Fumar/métodos , Vareniclina/efeitos adversos
2.
Cochrane Database Syst Rev ; 4: CD000031, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32319681

RESUMO

BACKGROUND: Whilst the pharmacological profiles and mechanisms of antidepressants are varied, there are common reasons why they might help people to stop smoking tobacco. Firstly, nicotine withdrawal may produce depressive symptoms and antidepressants may relieve these. Additionally, some antidepressants may have a specific effect on neural pathways or receptors that underlie nicotine addiction. OBJECTIVES: To assess the evidence for the efficacy, safety and tolerability of medications with antidepressant properties in assisting long-term tobacco smoking cessation in people who smoke cigarettes. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Specialized Register, which includes reports of trials indexed in the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO, clinicaltrials.gov, the ICTRP, and other reviews and meeting abstracts, in May 2019. SELECTION CRITERIA: We included randomized controlled trials (RCTs) that recruited smokers, and compared antidepressant medications with placebo or no treatment, an alternative pharmacotherapy, or the same medication used in a different way. We excluded trials with less than six months follow-up from efficacy analyses. We included trials with any follow-up length in safety analyses. DATA COLLECTION AND ANALYSIS: We extracted data and assessed risk of bias using standard Cochrane methods. We also used GRADE to assess the certainty of the evidence. The primary outcome measure was smoking cessation after at least six months follow-up, expressed as a risk ratio (RR) and 95% confidence intervals (CIs). We used the most rigorous definition of abstinence available in each trial, and biochemically validated rates if available. Where appropriate, we performed meta-analysis using a fixed-effect model. Similarly, we presented incidence of safety and tolerance outcomes, including adverse events (AEs), serious adverse events (SAEs), psychiatric AEs, seizures, overdoses, suicide attempts, death by suicide, all-cause mortality, and trial dropout due to drug, as RRs (95% CIs). MAIN RESULTS: We included 115 studies (33 new to this update) in this review; most recruited adult participants from the community or from smoking cessation clinics. We judged 28 of the studies to be at high risk of bias; however, restricting analyses only to studies at low or unclear risk did not change clinical interpretation of the results. There was high-certainty evidence that bupropion increased long-term smoking cessation rates (RR 1.64, 95% CI 1.52 to 1.77; I2 = 15%; 45 studies, 17,866 participants). There was insufficient evidence to establish whether participants taking bupropion were more likely to report SAEs compared to those taking placebo. Results were imprecise and CIs encompassed no difference (RR 1.16, 95% CI 0.90 to 1.48; I2 = 0%; 21 studies, 10,625 participants; moderate-certainty evidence, downgraded one level due to imprecision). We found high-certainty evidence that use of bupropion resulted in more trial dropouts due to adverse events of the drug than placebo (RR 1.37, 95% CI 1.21 to 1.56; I2 = 19%; 25 studies, 12,340 participants). Participants randomized to bupropion were also more likely to report psychiatric AEs compared with those randomized to placebo (RR 1.25, 95% CI 1.15 to 1.37; I2 = 15%; 6 studies, 4439 participants). We also looked at the safety and efficacy of bupropion when combined with other non-antidepressant smoking cessation therapies. There was insufficient evidence to establish whether combination bupropion and nicotine replacement therapy (NRT) resulted in superior quit rates to NRT alone (RR 1.19, 95% CI 0.94 to 1.51; I2 = 52%; 12 studies, 3487 participants), or whether combination bupropion and varenicline resulted in superior quit rates to varenicline alone (RR 1.21, 95% CI 0.95 to 1.55; I2 = 15%; 3 studies, 1057 participants). We judged the certainty of evidence to be low and moderate, respectively; in both cases due to imprecision, and also due to inconsistency in the former. Safety data were sparse for these comparisons, making it difficult to draw clear conclusions. A meta-analysis of six studies provided evidence that bupropion resulted in inferior smoking cessation rates to varenicline (RR 0.71, 95% CI 0.64 to 0.79; I2 = 0%; 6 studies, 6286 participants), whilst there was no evidence of a difference in efficacy between bupropion and NRT (RR 0.99, 95% CI 0.91 to 1.09; I2 = 18%; 10 studies, 8230 participants). We also found some evidence that nortriptyline aided smoking cessation when compared with placebo (RR 2.03, 95% CI 1.48 to 2.78; I2 = 16%; 6 studies, 975 participants), whilst there was insufficient evidence to determine whether bupropion or nortriptyline were more effective when compared with one another (RR 1.30 (favouring bupropion), 95% CI 0.93 to 1.82; I2 = 0%; 3 studies, 417 participants). There was no evidence that any of the other antidepressants tested (including St John's Wort, selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs)) had a beneficial effect on smoking cessation. Findings were sparse and inconsistent as to whether antidepressants, primarily bupropion and nortriptyline, had a particular benefit for people with current or previous depression. AUTHORS' CONCLUSIONS: There is high-certainty evidence that bupropion can aid long-term smoking cessation. However, bupropion also increases the number of adverse events, including psychiatric AEs, and there is high-certainty evidence that people taking bupropion are more likely to discontinue treatment compared with placebo. However, there is no clear evidence to suggest whether people taking bupropion experience more or fewer SAEs than those taking placebo (moderate certainty). Nortriptyline also appears to have a beneficial effect on smoking quit rates relative to placebo. Evidence suggests that bupropion may be as successful as NRT and nortriptyline in helping people to quit smoking, but that it is less effective than varenicline. There is insufficient evidence to determine whether the other antidepressants tested, such as SSRIs, aid smoking cessation, and when looking at safety and tolerance outcomes, in most cases, paucity of data made it difficult to draw conclusions. Due to the high-certainty evidence, further studies investigating the efficacy of bupropion versus placebo are unlikely to change our interpretation of the effect, providing no clear justification for pursuing bupropion for smoking cessation over front-line smoking cessation aids already available. However, it is important that where studies of antidepressants for smoking cessation are carried out they measure and report safety and tolerability clearly.


Assuntos
Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Abandono do Hábito de Fumar/métodos , Fumar/tratamento farmacológico , Ansiolíticos/efeitos adversos , Antidepressivos/efeitos adversos , Bupropiona/efeitos adversos , Bupropiona/uso terapêutico , Humanos , Nortriptilina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Fumar/psicologia , Abandono do Hábito de Fumar/psicologia , Dispositivos para o Abandono do Uso de Tabaco , Vareniclina/efeitos adversos , Vareniclina/uso terapêutico
3.
Health Soc Care Community ; 30(2): e325-e346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34337817

RESUMO

Volunteering for an organisation, charity or group enables people to make connections with others and to be involved in interesting, worthwhile and/or enjoyable pursuits. Engaging in volunteering can form part of a social prescribing action plan developed between a patient and link worker. Greater understanding of the processes through which volunteering can improve people's well-being as part of social prescribing will help to support link workers in their role. We conducted a best-fit framework synthesis of qualitative literature on volunteering and well-being. Our search of eight electronic databases, complemented by a Google search, conducted in June 2020, resulted in the location of 2210 potentially relevant references. After screening, 335 papers were read in full and 54 drawn upon within the review. They were published between 1993 and 2020. We used the New Economics Foundation's Five Ways to Well-Being model to guide data extraction and synthesis. From this, we developed a conceptual framework that highlights how volunteering can contribute to identity validation and modification leading to the establishment of an acceptable sense of self. Our findings have implications for: (a) the use of volunteering as part of a link worker's toolkit as they seek to support people with varying psychosocial needs and (b) requirements of organisations accepting referrals to volunteering as part of social prescribing.


Assuntos
Voluntários , Humanos , Pesquisa Qualitativa , Voluntários/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA