Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Enzyme Inhib Med Chem ; 38(1): 387-397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36446617

RESUMO

Bacterial resistance is an increasing threat to healthcare systems, highlighting the need for discovering new antibacterial agents. An established technique, fragment-based drug discovery, was used to target a bacterial enzyme Ddl involved in the biosynthesis of peptidoglycan. We assembled general and focused fragment libraries that were screened in a biochemical inhibition assay. Screening revealed a new fragment-hit inhibitor of DdlB with a Ki value of 20.7 ± 4.5 µM. Binding to the enzyme was confirmed by an orthogonal biophysical method, surface plasmon resonance, making the hit a promising starting point for fragment development.


Assuntos
Antibacterianos , Peptidoglicano , Antibacterianos/farmacologia , Parede Celular , Bioensaio , Ligases
2.
Bioorg Med Chem Lett ; 73: 128915, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917835

RESUMO

Screening of DNA-encoded libraries is an emerging technology for discovering hits against protein targets. With the recent launch of the DELopen platform, a facile screening of 4.4 billion compounds is available to accelerate the drug discovery process. Here we report an affinity-based screening of the DELopen library for the first time. The screening was performed against two bacterial enzymes of the peptidoglycan biosynthetic pathway, N-acetylglucosamine-enolpyruvyl transferase (MurA) and d-alanine:d-alanine ligase (DdlB). Several binders were obtained and selected for off-DNA synthesis. Hits with confirmed inhibitory potency were deconstructed into smaller fragments. In this way, two new MurA inhibitors with antibacterial activity were obtained and are available for further optimization.


Assuntos
Alquil e Aril Transferases , Peptidoglicano , Alanina , Vias Biossintéticas , DNA , Inibidores Enzimáticos/farmacologia
3.
Bioorg Chem ; 128: 106087, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970069

RESUMO

Novel bacterial topoisomerase inhibitors (NBTIs) are an important new class of antibacterials targeting bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Notwithstanding their potent antibacterial activity, they suffer from a detrimental class-related hERG blockage. In this study, we designed and synthesized an optimized library of NBTIs comprising different linker moieties that exhibit reduced hERG inhibition and retain inhibitory potencies on DNA gyrase and topoisomerase IV of Staphylococcus aureus and Escherichia coli, respectively, as well as potent antibacterial activities. Substitution of the linker's tertiary amine with polar groups outcome in diminished hERG inhibition. Compound 17 expresses nanomolar enzyme inhibitory potency and antibacterial activity against both Gram-positive and Gram-negative bacteria as well as reduced hERG inhibition relative to our previously published NBTI analogs. Here, we point to some important NBTI's structural features that influence their hERG inhibitory activity.


Assuntos
Antibacterianos , DNA Girase , Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV , Escherichia coli/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Naftiridinas/química , Relação Estrutura-Atividade , Tioinosina/análogos & derivados , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
4.
Bioorg Chem ; 119: 105581, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990933

RESUMO

The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Piperazina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Nitritos/análise , Piperazina/síntese química , Piperazina/química , Relação Estrutura-Atividade
5.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889355

RESUMO

Open innovation initiatives provide opportunities for collaboration and sharing of knowledge and experience between industry, academia, and government institutions. Through open innovation, Merck is offering a Mini Library of 80 carefully selected compounds from previous research and development projects to a broader scientific community for testing in academic drug discovery projects. These compounds are predominantly drug-like and cover a broad range of molecular targets. They could potentially interact with other enzymes, receptors, transporters, and ion channels of interest. The Mini Library was tested on seven in-house enzymes (bacterial MurA, MurC ligase, and DdlB enzyme, human MAO-A/B, human BChE, and murine AChE), and several hits were identified. A follow-up series of structural analogues provided by Merck gave a more detailed insight into the accessibility and the quality of the hit compounds. For example, sartan derivatives were moderate inhibitors of MurC, whereas bisarylureas were potent, selective, nanomolar inhibitors of hMAO-B. Importantly, 3-n-butyl-substituted indoles were identified as low nanomolar selective inhibitors of hBChE. All in all, the hit derivatives provide new starting points for the further exploration of the chemical space of high-quality enzyme inhibitors.


Assuntos
Inibidores Enzimáticos , Monoaminoxidase , Animais , Inibidores da Colinesterase/química , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Pesquisa , Relação Estrutura-Atividade
6.
Chembiochem ; 22(4): 743-753, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33030752

RESUMO

Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Cisteína/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteoma/análise , Proteoma/metabolismo , Cisteína/metabolismo , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Proteoma/química
7.
Bioorg Med Chem Lett ; 40: 127966, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33744441

RESUMO

Antibiotic resistance represents one of the biggest public health challenges in the last few years. Mur ligases (MurC-MurF) are involved in the synthesis of UDP-N-acetylmuramyl-pentapeptide, the main building block of bacterial peptidoglycan polymer. They are essential for the survival of bacteria and therefore important antibacterial targets. We report herein the synthesis and structure-activity relationships of Mur ligases inhibitors with an azastilbene scaffold. Several compounds showed promising inhibitory potencies against multiple ligases and one compound also possessed moderate antibacterial activity. These results represent a solid ground for further development and optimization of structurally novel antimicrobial agents to combat the rising bacterial resistance.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Compostos de Benzilideno/farmacologia , Inibidores Enzimáticos/farmacologia , Peptídeo Sintases/antagonistas & inibidores , Piridinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptídeo Sintases/metabolismo , Ligação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade
8.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770996

RESUMO

Quinazolinones represent an important scaffold in medicinal chemistry with diverse biological activities. Here, two series of 2-substituted quinazolin-4(3H)-ones were synthesized and evaluated for their antioxidant properties using three different methods, namely DPPH, ABTS and TEACCUPRAC, to obtain key information about the structure-antioxidant activity relationships of a diverse set of substituents at position 2 of the main quinazolinone scaffold. Regarding the antioxidant activity, ABTS and TEACCUPRAC assays were more sensitive and gave more reliable results than the DPPH assay. To obtain antioxidant activity of 2-phenylquinazolin-4(3H)-one, the presence of at least one hydroxyl group in addition to the methoxy substituent or the second hydroxyl on the phenyl ring in the ortho or para positions is required. An additional ethylene linker between quinazolinone ring and phenolic substituent, present in the second series (compounds 25a and 25b), leads to increased antioxidant activity. Furthermore, in addition to antioxidant activity, the derivatives with two hydroxyl groups in the ortho position on the phenyl ring exhibited metal-chelating properties. Our study represents a successful use of three different antioxidant activity evaluation methods to define 2-(2,3-dihydroxyphenyl)quinazolin-4(3H)-one 21e as a potent antioxidant with promising metal-chelating properties.


Assuntos
Antioxidantes/farmacologia , Quinazolinonas/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Estrutura Molecular , Picratos/antagonistas & inibidores , Quinazolinonas/síntese química , Quinazolinonas/química , Ácidos Sulfônicos/antagonistas & inibidores
9.
J Enzyme Inhib Med Chem ; 34(1): 1010-1017, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31072165

RESUMO

The Mur ligases form a series of consecutive enzymes that participate in the intracellular steps of bacterial peptidoglycan biosynthesis. They therefore represent interesting targets for antibacterial drug discovery. MurC, D, E and F are all ATP-dependent ligases. Accordingly, with the aim being to find multiple inhibitors of these enzymes, we screened a collection of ATP-competitive kinase inhibitors, on Escherichia coli MurC, D and F, and identified five promising scaffolds that inhibited at least two of these ligases. Compounds 1, 2, 4 and 5 are multiple inhibitors of the whole MurC to MurF cascade that act in the micromolar range (IC50, 32-368 µM). NMR-assisted binding studies and steady-state kinetics studies performed on aza-stilbene derivative 1 showed, surprisingly, that it acts as a competitive inhibitor of MurD activity towards D-glutamic acid, and additionally, that its binding to the D-glutamic acid binding site is independent of the enzyme closure promoted by ATP.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Ligases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Cinética , Ligases/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
10.
Molecules ; 24(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939731

RESUMO

Despite the great importance of ß-lactam antibiotics, there is still a limited number of synthetic approaches for the formation of ß-lactam⁻containing dipeptides. In this study, we report upon the stereoselective preparation of ß-lactam⁻containing pseudopeptides, where different reaction conditions and NH2 protective groups were tested to obtain compounds that contain 3-amino-azetidin-2-one. We demonstrate that the protective group is essential for the outcome of the reaction. Successful implementation of dibenzyl-protected serine-containing dipeptides through the Mitsunobu reaction can provide the desired products at high yields and stereoselectivity.


Assuntos
Antibacterianos/síntese química , Compostos Heterocíclicos com 1 Anel/química , Fragmentos de Peptídeos/síntese química , beta-Lactamas/síntese química , Estrutura Molecular
11.
Arch Pharm (Weinheim) ; 351(12): e1800184, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30461051

RESUMO

An electrophilic fragment library of small heterocycles was developed and characterized in the surrogate GSH-reactivity assay and aqueous stability test that revealed their potential as covalent warheads. Screening the library against MurA from Staphylococcus aureus (MurASA ) and Escherichia coli (MurAEC ) identified heterocyclic fragments with significant inhibitory potency. The validated heterocyclic warhead library might be useful for developing targeted covalent inhibitors for other targets of interest with a new design strategy incorporating heterocyclic electrophiles as warheads.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Compostos Heterocíclicos/síntese química , Alquil e Aril Transferases/química , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Escherichia coli/efeitos dos fármacos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 27(15): 3529-3533, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28579123

RESUMO

MurA is an intracellular bacterial enzyme that is essential for peptidoglycan biosynthesis, and is therefore an important target for antibacterial drug discovery. We report the synthesis, in silico studies and extensive structure-activity relationships of a series of quinazolinone-based inhibitors of MurA from Escherichia coli. 3-Benzyloxyphenylquinazolinones showed promising inhibitory potencies against MurA, in the low micromolar range, with an IC50 of 8µM for the most potent derivative (58). Furthermore, furan-substituted quinazolinones (38, 46) showed promising antibacterial activities, with MICs from 1µg/mL to 8µg/mL, concomitant with their MurA inhibitory potencies. These data represent an important step towards the development of novel antimicrobial agents to combat increasing bacterial resistance.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Alquil e Aril Transferases/metabolismo , Antibacterianos/síntese química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Quinazolinonas/síntese química , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 27(4): 944-949, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077258

RESUMO

We report on the successful application of ProBiS-CHARMMing web server in the discovery of new inhibitors of MurA, an enzyme that catalyzes the first committed cytoplasmic step of bacterial peptidoglycan synthesis. The available crystal structures of Escherichia coli MurA in the Protein Data Bank have binding sites whose small volume does not permit the docking of drug-like molecules. To prepare the binding site for docking, the ProBiS-CHARMMing web server was used to simulate the induced-fit effect upon ligand binding to MurA, resulting in a larger, more holo-like binding site. The docking of a filtered ZINC compound library to this enlarged binding site was then performed and resulted in three compounds with promising inhibitory potencies against MurA. Compound 1 displayed significant inhibitory potency with IC50 value of 1µM. All three compounds have novel chemical structures, which could be used for further optimization of small-molecule MurA inhibitors.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Sequência de Carboidratos , Descoberta de Drogas , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Peptidoglicano/metabolismo
14.
Mol Divers ; 20(3): 667-76, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27017352

RESUMO

The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).


Assuntos
Amidas/síntese química , Cânfora/análogos & derivados , Doença de Alzheimer/tratamento farmacológico , Amidas/química , Amidas/farmacologia , Infecções Bacterianas/tratamento farmacológico , Butirilcolinesterase/metabolismo , Cânfora/química , Técnicas de Química Sintética , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Humanos , Estrutura Molecular
15.
J Comput Aided Mol Des ; 29(6): 541-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25851408

RESUMO

Bacterial resistance to the available antibiotic agents underlines an urgent need for the discovery of novel antibacterial agents. Members of the bacterial Mur ligase family MurC-MurF involved in the intracellular stages of the bacterial peptidoglycan biosynthesis have recently emerged as a collection of attractive targets for novel antibacterial drug design. In this study, we have first extended the knowledge of the class of furan-based benzene-1,3-dicarboxylic acid derivatives by first showing a multiple MurC-MurF ligase inhibition for representatives of the extended series of this class. Steady-state kinetics studies on the MurD enzyme were performed for compound 1, suggesting a competitive inhibition with respect to ATP. To the best of our knowledge, compound 1 represents the first ATP-competitive MurD inhibitor reported to date with concurrent multiple inhibition of all four Mur ligases (MurC-MurF). Subsequent molecular dynamic (MD) simulations coupled with interaction energy calculations were performed for two alternative in silico models of compound 1 in the UMA/D-Glu- and ATP-binding sites of MurD, identifying binding in the ATP-binding site as energetically more favorable in comparison to the UMA/D-Glu-binding site, which was in agreement with steady-state kinetic data. In the final stage, based on the obtained MD data novel furan-based benzene monocarboxylic acid derivatives 8-11, exhibiting multiple Mur ligase (MurC-MurF) inhibition with predominantly superior ligase inhibition over the original series, were discovered and for compound 10 it was shown to possess promising antibacterial activity against S. aureus. These compounds represent novel leads that could by further optimization pave the way to novel antibacterial agents.


Assuntos
Antibacterianos/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Furanos/química , Ligases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Ácidos Carboxílicos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Ligases/química , Ligases/metabolismo , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
16.
J Chem Inf Model ; 54(5): 1451-66, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24724969

RESUMO

Increasing bacterial resistance to available antibiotics stimulated the discovery of novel efficacious antibacterial agents. The biosynthesis of the bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of the UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. In our previous computational studies, the C-terminal domain motion of the MurD ligase was investigated using Targeted Molecular Dynamic (TMD) simulation and the Off-Path Simulation (OPS) technique. In this study, we present a drug design strategy using multiple protein structures for the identification of novel MurD ligase inhibitors. Our main focus was the ATP-binding site of the MurD enzyme. In the first stage, three MurD protein conformations were selected based on the obtained OPS/TMD data as the initial criterion. Subsequently, a two-stage virtual screening approach was utilized combining derived structure-based pharmacophores with molecular docking calculations. Selected compounds were then assayed in the established enzyme binding assays, and compound 3 from the aminothiazole class was discovered to act as a dual MurC/MurD inhibitor in the micomolar range. A steady-state kinetic study was performed on the MurD enzyme to provide further information about the mechanistic aspects of its inhibition. In the final stage, all used conformations of the MurD enzyme with compound 3 were simulated in classical molecular dynamics (MD) simulations providing atomistic insights of the experimental results. Overall, the study depicts several challenges that need to be addressed when trying to hit a flexible moving target such as the presently studied bacterial MurD enzyme and show the possibilities of how computational tools can be proficiently used at all stages of the drug discovery process.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Peptídeo Sintases/antagonistas & inibidores , Peptídeo Sintases/química , Trifosfato de Adenosina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Sintases/metabolismo , Conformação Proteica , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Interface Usuário-Computador
17.
Bioorg Med Chem ; 22(15): 4124-34, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24953950

RESUMO

Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents.


Assuntos
Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Peptídeo Sintases/antagonistas & inibidores , Pirróis/química , Sítios de Ligação , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Cinética , Simulação de Dinâmica Molecular , Peptídeo Sintases/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pirróis/metabolismo , Relação Estrutura-Atividade
18.
Bioorg Chem ; 55: 2-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24755374

RESUMO

The widespread emergence of resistant bacterial strains is becoming a serious threat to public health. This thus signifies the need for the development of new antibacterial agents with novel mechanisms of action. Continuous efforts in the design of novel antibacterials remain one of the biggest challenges in drug development. In this respect, the Mur enzymes, MurA-F, that are involved in the formation of UDP-N-acetylmuramyl-pentapeptide can be genuinely considered as promising antibacterial targets. This review provides an in-depth insight into the recent developments in the field of inhibitors of the MurA-F enzymes. Special attention is also given to compounds that act as multiple inhibitors of two, three or more of the Mur enzymes. Moreover, the reasons for the lack of preclinically successful inhibitors and the challenges to overcome these hurdles in the next years are also debated.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Peptidoglicano/biossíntese , Peptidoglicano/química , Animais , Humanos
19.
Acta Chim Slov ; 60(2): 294-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23878932

RESUMO

MurF is an essential bacterial enzyme that is involved in the last intracellular stage of peptidoglycan biosynthesis, and therefore it has the potential to be exploited as a target for the development of new antibacterials. Here, we report on the expression, purification and biochemical characterization of MurF from an important pathogen, Streptococcus pneumoniae. Additionally, ligand-based virtual screening was successfully used and a new hit compound with micromolar inhibitory activities against MurF enzymes from S. pneumoniae and Escherichia coli was identified.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus pneumoniae/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Ligantes , Testes de Sensibilidade Microbiana , Streptococcus pneumoniae/efeitos dos fármacos
20.
ACS Omega ; 8(36): 33006-33016, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720776

RESUMO

MurA catalyzes the first step of peptidoglycan (PG) biosynthesis and is a validated target for the development of new antimicrobial agents. In this study, a library of 49 plant flavonoids and their synthetic derivatives were evaluated for their inhibitory properties against MurA fromEscherichia coli. The compounds were tested with and without preincubation and with the addition of DTT to understand the mechanism of inhibition. Thirteen compounds were identified as reversible, time-dependent inhibitors, with inhibition levels ranging from 480 nM to 57 µM, and ampelopsin as the most potent compound. To investigate the major pharmacophore elements responsible for the activity, 2D-QSAR and docking analyzes were performed. The results showed that the catechol moiety and an additional aromatic system were the most important features contributing to the activity of the compounds. However, most of the compounds did not show antibacterial activity againstE. coli andStaphylococcus aureusstrains, suggesting that their inhibitory activity against MurA may not be strong enough to induce antibacterial effects. Nevertheless, our results suggest that flavonoids are a promising starting point to develop new inhibitors of MurA and show great potential for further steps in drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA