Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Appl Clin Med Phys ; 24(11): e14099, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37488974

RESUMO

Treating and imaging patients in the upright orientation is gaining acceptance in radiation oncology and radiology and has distinct advantages over the recumbent position. An IRB approved study to investigate the positions and orientations of the male pelvic organs between the supine and upright positions was conducted. The study comprised of scanning 15 male volunteers (aged 55-75 years) on a 0.6 T Fonar MRI scanner in the supine and upright positions with a full bladder and in the upright position with an empty bladder. The Pelvic study revealed that in the upright position the 1. Position and shape of the prostate are not impacted significantly by bladder fill. 2. Distance between the sacrum and the anterior bladder wall is significantly smaller. 3. Anterior-Posterior length and the bladder width is significantly larger. 4. Seminal vesicles are pushed down by the bladder. 5. Top of the penile bulb is further away from the apex of the prostate. These observed differences could positively impact upright prostate treatments by 1. Reducing the risk of small bowel approximating the treatment volume. 2. Prostate treatments can be done with a reduced focus on bladder fill. 3. Radiation beams for treating intermediate risk prostrate can be made smaller or a larger portion of the seminal vesicles can be treated with the same beam size than typically used for supine treatments. 4. Reducing the average dose to the penile bulb.


Assuntos
Pelve , Próstata , Humanos , Masculino , Próstata/diagnóstico por imagem , Decúbito Dorsal , Estudos de Viabilidade , Pelve/diagnóstico por imagem , Bexiga Urinária
2.
Technol Cancer Res Treat ; 22: 15330338231164195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36940132

RESUMO

Objectives: To establish and validate a linear model utilizing diaphragm motion (DM) to predict the displacement of liver tumors (DLTs) for patients who underwent carbon ion radiotherapy (CIRT). A total of 60 pairs of planning and reviewing four-dimensional computed tomography (4DCT) sets over 23 patients were used. Method: We constructed an averaged computed tomography (CT) set for each either planning or reviewing 4DCT within respiratory phases between 20% of exhale and inhale. A rigid image registration to align bony structures was performed between planning and reviewing 4DCT. The position changes on top of diaphragm in superior-inferior (SI) direction between 2 CTs to present DM were obtained. The translational vectors in SI from matching to present DLT were obtained. The linear model was built by training data for 23 imaging pairs. A distance model utilized the cumulative probability distribution (CPD) of DM or DLT and was compared with the linear model. We conducted the statistical regression analysis with receiver operating characteristic (ROC) testing data of 37 imaging pairs to validate the performance of our linear model. Results: The DM within 0.5 mm was true positive (TP) with an area under the ROC curve (AUC) of 0.983 to predict DLT. The error of predicted DLT within half of its mean value indicated the reliability of prediction method. The 23 pairs of data showed (4.5 ± 3.3) mm for trend of DM and (2.2 ± 1.6) mm for DLT. A linear model of DLT = 0.46*DM + 0.12 was established. The predicted DLT was (2.2 ± 1.5) mm with a prediction error of (0.3 ± 0.3) mm. The accumulated probability of observed and predicted DLT with < 5.0 mm magnitude was 93.2% and 94.5%, respectively. Conclusion: We utilized the linear model to set the proper beam gating for predicting DLT within 5.0 mm to treat patients. We will investigate a proper process on x-ray fluoroscopy images to establish a reliable model predicting DLT for DM observed in x-ray fluoroscopy in the following two years.


Assuntos
Radioterapia com Íons Pesados , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Diafragma/diagnóstico por imagem , Diafragma/patologia , Reprodutibilidade dos Testes , Movimento (Física) , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patologia , Tomografia Computadorizada Quadridimensional/métodos , Respiração , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias Pulmonares/radioterapia
3.
Radiother Oncol ; 156: 69-79, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309999

RESUMO

PURPOSE: To estimate the Lyman Kutcher Burman (LKB) and multivariate NTCP models predicting the AUT of prostate cancer treated with CIRT. MATERIALS AND METHODS: A cohort of 154 prostate adenocarcinoma patients were retrospectively analyzed. The AUT levels were graded according to CTCAE 4.03. Based on dosimetric parameters and/or clinical factors, a set of variables with best-fit values determined in the two models was validated by the area under the receiver operating characteristic curve (AUC) and used to correlate the predicted and observed NTCP rates for both levels and related endpoints. RESULT: 59 (38.3%) patients experienced AUT. For LKB model, the equivalent uniform doses (EUDs) were calculated to be 62.0 GyE (following V61.5 > 1.7%) and 61.2 GyE (following maximum dose > 63.0 GyE) with predicted NTCP rates of 37.0% (AUC: 0.71) and 15.6% (AUC: 0.65) for AUT G1&2 and G2 of bladder. While for the multivariate model, the predicted NTCP rates was 37.1% (AUC: 0.70) and 20.2% (AUC: 0.64) for AUT G1&2 and G2, associated with V61 and V65, respectively. Nocturia was associated with bladder volume and maximum dose for G1&2, with patient's age and maximum bladder dose for G2. Other predictable endpoints were associated with V≥61. The predicted NTCPs agree with the observed complication rates for bladder and its wall. CONCLUSIONS: The LKB model successfully predicted the NTCP rates of both AUT levels and urgency urination. The multivariate model predicted well on both levels and nocturia. Decreasing high bladder dose volume may reduce the incidence of AUT.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Lesões por Radiação , Humanos , Masculino , Probabilidade , Neoplasias da Próstata/radioterapia , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
4.
Med Phys ; 48(1): e1-e30, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33078858

RESUMO

Proton therapy is an expanding radiotherapy modality in the United States and worldwide. With the number of proton therapy centers treating patients increasing, so does the need for consistent, high-quality clinical commissioning practices. Clinical commissioning encompasses the entire proton therapy system's multiple components, including the treatment delivery system, the patient positioning system, and the image-guided radiotherapy components. Also included in the commissioning process are the x-ray computed tomography scanner calibration for proton stopping power, the radiotherapy treatment planning system, and corresponding portions of the treatment management system. This commissioning report focuses exclusively on intensity-modulated scanning systems, presenting details of how to perform the commissioning of the proton therapy and ancillary systems, including the required proton beam measurements, treatment planning system dose modeling, and the equipment needed.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Calibragem , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
J Appl Clin Med Phys ; 11(2): 3015, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20592691

RESUMO

Large area, shallow fields are well suited to proton therapy. However, due to beam production limitations, such volumes typically require multiple matched fields. This is problematic due to the relatively narrow beam penumbra at shallow depths compared to electron and photon beams. Therefore, highly accurate dose planning and delivery is required. As the dose delivery includes shifting the patient for matched fields, accuracy at the 1-2 millimeter level in patient positioning is also required. This study investigates the dosimetric accuracy of such proton field matching by an innovative robotic patient positioner system (RPPS). The dosimetric comparisons were made between treatment planning system calculations, radiographic film and ionization chamber measurements. The results indicated good agreement amongst the methods and suggest that proton field matching by a RPPS is accurate and efficient.


Assuntos
Neoplasias/radioterapia , Posicionamento do Paciente , Terapia com Prótons , Radiometria , Radioterapia/instrumentação , Robótica , Humanos , Dosagem Radioterapêutica
6.
Front Oncol ; 8: 523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483477

RESUMO

Purpose: Positron emission tomography (PET) scanning is a widely used method of proton therapy verification. In this study, a proton radiotherapy accuracy verification process was developed by comparing predicted and measured PET data to verify the correctness of PET prediction and was tested at the Shanghai Proton and Heavy Ion Center. Method: Irradiation was performed on a polymethyl methacrylate (PMMA) phantom. There were two dose groups, to which 2 and 4 Gy doses were delivered, and each dose group had different designed dose depths ranging from 5 to 20 cm. The predicted PET results were obtained using a PET prediction calculation module. The measured data were collected with a PET/computed tomography device. The predicted and measured PET data were normalized to similar PET amplitude values before comparison and were compared using depth and lateral profiles for the position error. The error was evaluated at the position corresponding to 50% of the maximum on the PET curves. The mean and standard deviation were calculated based on the data sampled in the scoring area. Gamma index analysis is also applied in the comparison. Results: In the depth comparison, the 2 and 4 Gy dose cases yielded similar mean depth errors between 1 and -1 mm, and the deviation was <2 mm. In the lateral comparison, the 2 Gy cases had a mean lateral error around 1 mm, and the 4 Gy cases had a mean lateral error <1 mm, with a standard deviation <1 mm for both the 2 and 4 Gy cases. All the cases have a gamma passing rate over 95%. Conclusion: The comparison of these PMMA phantom cases revealed good agreement between the predicted and measured PET data, with depth and lateral position errors <2 mm in total, considering the uncertainty. The comparison results demonstrate that the PET predictions obtained in PMMA phantom tests for single proton beam therapy verification are reliable and that the research can be extended to verification in human body treatment with further investigation.

7.
Australas Phys Eng Sci Med ; 30(4): 344-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18274078

RESUMO

Lung cancer treatment presents a greater treatment planning and treatment delivery challenge in proton beam therapy compared to conventional photon therapy due to the proton beam's energy deposition sensitivity to the breathing-induced dynamic tissue density variations along the beam path. Four-dimensional computed tomography (4D-CT) has been defined as the explicit inclusion of temporal changes of tumor and normal organ mobility into an image series. It allows more accurate delineation of lung cancer target volumes by suppression of any breathing motion artifacts present in the CT images. It also allows analysis of the tumor's 3D spatial movement within a breathing phase cycle. The motivation for this study was to investigate dosimetric errors caused by lung tumor motion in order to find an optimal method of design for patient compensators and apertures for a passive scattering beam delivery system and treatment of the patient under free breathing conditions. In this study, the maximum intensity projection (MIP) method was compared to patient-specific internal margin designs based on a single breathing phase at the end-of inhale (EOI) or middle-of-exhale (MOE). It was found that MIP method provides superior tumor dose distribution compared to patient-specific internal margin designs derived from 4D-CT.


Assuntos
Neoplasias Pulmonares/radioterapia , Terapia com Prótons , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Movimento , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Mecânica Respiratória , Tomografia Computadorizada por Raios X
8.
Radiat Oncol ; 12(1): 132, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28810881

RESUMO

PURPOSE: The aim of the present study was to compare the dose distribution generated from photon volumetric modulated arc therapy (VMAT), intensity modulated proton therapy (IMPT), and intensity modulated carbon ion therapy (IMCIT) in the delivery of hypo-fractionated thoracic radiotherapy. METHODS AND MATERIALS: Ten selected patients who underwent thoracic particle therapy between 2015 and 2016 were re-planned to receive a relative biological effectiveness (RBE) weighted dose of 60 Gy (i.e., GyE) in 15 fractions delivered with VMAT, IMPT, or IMCIT with the same optimization criteria. Treatment plans were then compared. RESULTS: There were no significant differences in target volume dose coverage or dose conformity, except improved D95 was found with IMCIT compared with VMAT (p = 0.01), and IMCIT was significantly better than IMPT in all target volume dose parameters. Particle therapy led to more prominent lung sparing at low doses, and this result was most prominent with IMCIT (p < 0.05). Improved sparing of other thoracic organs at risk (OARs) was observed with particle therapy, and IMCIT further lowered the D1cc and D5cc for major blood vessels, as compared with IMPT (p = 0.01). CONCLUSION: Although it was comparable to VMAT, IMCIT led to significantly better tumor target dose coverage and conformity than did IMPT. Particle therapy, compared with VMAT, improved thoracic OAR sparing. IMCIT, compared with IMPT, may further improve normal lung and major blood vessel sparing under limited respiratory motion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Radioterapia com Íons Pesados/métodos , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Fracionamento da Dose de Radiação , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
9.
Phys Med Biol ; 51(20): 5183-97, 2006 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17019032

RESUMO

Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.


Assuntos
Algoritmos , Artefatos , Metais , Próteses e Implantes , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Elétrons/uso terapêutico , Humanos , Fótons/uso terapêutico , Terapia com Prótons , Intensificação de Imagem Radiográfica/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Med Dosim ; 34(4): 317-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19854391

RESUMO

We evaluated 4 volume-based automatic image registration algorithms from 2 commercially available treatment planning systems (Philips Syntegra and BrainScan). The algorithms based on cross correlation (CC), local correlation (LC), normalized mutual information (NMI), and BrainScan mutual information (BSMI) were evaluated with: (1) the synthetic computed tomography (CT) images, (2) the CT and magnetic resonance (MR) phantom images, and (3) the CT and MR head image pairs from 12 patients with brain tumors. For the synthetic images, the registration results were compared with known transformation parameters, and all algorithms achieved accuracy of submillimeter in translation and subdegree in rotation. For the phantom images, the registration results were compared with those provided by frame and marker-based manual registration. For the patient images, the results were compared with anatomical landmark-based manual registration to qualitatively determine how the results were close to a clinically acceptable registration. NMI and LC outperformed CC and BSMI, with the sense of being closer to a clinically acceptable result. As for the robustness, NMI and BSMI outperformed CC and LC. A guideline of image registration in our institution was given, and final visual assessment is necessary to guarantee reasonable results.


Assuntos
Algoritmos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/radioterapia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA