Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Semin Respir Crit Care Med ; 44(5): 594-611, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541315

RESUMO

This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.


Assuntos
Mioglobina , Oxigênio , Humanos , Pulmão , Respiração Celular , Perfusão , Consumo de Oxigênio/fisiologia
2.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103557

RESUMO

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Assuntos
Lesão Pulmonar Aguda/patologia , Inflamação/fisiopatologia , Relatório de Pesquisa/tendências , Lesão Pulmonar Aguda/imunologia , Animais
3.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L736-L749, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346778

RESUMO

Normal lungs do not express α-Klotho (Klotho) protein but derive cytoprotection from circulating soluble Klotho. It is unclear whether chronic supranormal Klotho levels confer additional benefit. To address this, we tested the age-related effects of modest Klotho overexpression on acute lung injury (ALI) and recovery. Transgenic Klotho-overexpressing (Tg-Kl) and wild-type (WT) mice (2 and 6 mo old) were exposed to hyperoxia (95% O2; 72 h; injury; Hx) then returned to normoxia (21% O2; 24 h; recovery; Hx-R). Control mice were kept in normoxia. Renal and serum Klotho, lung histology, and bronchoalveolar lavage fluid oxidative damage markers were assessed. Effects of hyperoxia on Klotho release were tested in human embryonic kidney cells stably expressing Klotho. A549 lung epithelial cells transfected with Klotho cDNA or vector were exposed to cigarette smoke; lactate dehydrogenase and double-strand DNA breaks were measured. Serum Klotho decreased with age. Hyperoxia suppressed renal Klotho at both ages and serum Klotho at 2 mo of age. Tg-Kl mice at both ages and 2-mo-old WT mice survived Hx-R; 6-mo-old Tg-Kl mice showed lower lung damage than age-matched WT mice. Hyperoxia directly inhibited Klotho expression and release in vitro; Klotho transfection attenuated cigarette smoke-induced cytotoxicity and DNA double-strand breaks in lung epithelial cells. Young animals with chronic high baseline Klotho expression were more resistant to ALI. Chronic constitutive Klotho overexpression in older Tg-Kl animals attenuated hyperoxia-induced lung damage and improves survival and short-term recovery despite an acute reduction in serum Klotho during injury. We conclude that chronic enhancement of Klotho expression increases resilience to ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Glucuronidase/sangue , Glucuronidase/metabolismo , Fumaça/efeitos adversos , Lesão Pulmonar Aguda/patologia , Animais , Linhagem Celular , Citoproteção/genética , Citoproteção/fisiologia , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Feminino , Glucuronidase/genética , Células HEK293 , Humanos , Hiperóxia , Proteínas Klotho , L-Lactato Desidrogenase/análise , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
4.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L936-L945, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785346

RESUMO

Paracrine erythropoietin (EPO) signaling in the lung recruits endothelial progenitor cells, promotes cell maturation and angiogenesis, and is upregulated during canine postpneumonectomy (PNX) compensatory lung growth. To determine whether inhalational delivery of exogenous EPO augments endogenous post-PNX lung growth, adult canines underwent right PNX and received, via a permanent tracheal stoma, weekly nebulization of recombinant human EPO-containing nanoparticles or empty nanoparticles (control) for 16 wk. Lung function was assessed under anesthesia pre- and post-PNX. The remaining lobes were fixed for detailed morphometric analysis. Compared with control treatment, EPO delivery significantly increased serum EPO concentration without altering systemic hematocrit or hemoglobin concentration and abrogated post-PNX lipid oxidative stress damage. EPO delivery modestly increased post-PNX volume densities of the alveolar septum per unit of lung volume and type II epithelium and endothelium per unit of septal tissue volume in selected lobes. EPO delivery also augmented the post-PNX increase in alveolar double-capillary profiles, a marker of intussusceptive capillary formation, in all remaining lobes. EPO treatment did not significantly alter absolute resting lung volumes, lung and membrane diffusing capacities, alveolar-capillary blood volume, pulmonary blood flow, lung compliance, or extravascular alveolar tissue volumes or surface areas. Results established the feasibility of chronic inhalational delivery of growth-modifying biologics in a large animal model. Exogenous EPO selectively enhanced cytoprotection and alveolar angiogenesis in remaining lobes but not whole-lung extravascular tissue growth or resting function; the nonuniform response contributes to structure-function discrepancy, a major challenge for interventions aimed at amplifying the innate potential for compensatory lung growth.


Assuntos
Capilares/crescimento & desenvolvimento , Eritropoetina/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Pneumonectomia , Alvéolos Pulmonares , Administração por Inalação , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Cães , Complacência Pulmonar/efeitos dos fármacos , Masculino , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/cirurgia
5.
Stem Cells ; 36(4): 616-625, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29226550

RESUMO

Induced pluripotent stem cells (iPSCs) have been reported to alleviate organ injury, although the mechanisms of action remain unclear and administration of intact cells faces many limitations. We hypothesized that cell-free conditioned media (CM) containing the secretome of iPSCs possess antioxidative constituents that can alleviate pulmonary oxidant stress damage. We derived iPSCs from human dermal fibroblasts and harvested the CM. Addition of iPSC CM to cultured human alveolar type-1 epithelial cells mitigated hyperoxia-induced depletion of endogenous total antioxidant capacity while tracheal instillation of iPSC CM into adult rat lungs enhanced hyperoxia-induced increase in TAC. In both the in vitro and in vivo models, iPSC CM ameliorated oxidative damage to DNA, lipid, and protein, and activated the nuclear factor (erythroid 2)-related factor 2 (Nrf2) network of endogenous antioxidant proteins. Compared with control fibroblast-conditioned or cell-free media, iPSC CM is highly enriched with αKlotho at a concentration up to more than 10-fold of that in normal serum. αKlotho is an essential antioxidative cell maintenance and protective factor and an activator of the Nrf2 network. Immunodepletion of αKlotho reduced iPSC CM-mediated cytoprotection by ∼50%. Thus, the abundant αKlotho content significantly contributes to iPSC-mediated antioxidation and cytoprotection. Results uncover a major mechanism of iPSC action, suggest a fundamental role of αKlotho in iPSC maintenance, and support the translational potential of airway delivery of cell-free iPSC secretome for protection against lung injury. The targeted cell-free secretome-based approach may also be applicable to the amelioration of injury in other organs. Stem Cells 2018;36:616-625.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Antioxidantes/metabolismo , Glucuronidase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares/patologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas Klotho , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley
6.
Eur Respir J ; 49(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28179436

RESUMO

Diffusing capacity of the lung for nitric oxide (DLNO), otherwise known as the transfer factor, was first measured in 1983. This document standardises the technique and application of single-breath DLNO This panel agrees that 1) pulmonary function systems should allow for mixing and measurement of both nitric oxide (NO) and carbon monoxide (CO) gases directly from an inspiratory reservoir just before use, with expired concentrations measured from an alveolar "collection" or continuously sampled via rapid gas analysers; 2) breath-hold time should be 10 s with chemiluminescence NO analysers, or 4-6 s to accommodate the smaller detection range of the NO electrochemical cell; 3) inspired NO and oxygen concentrations should be 40-60 ppm and close to 21%, respectively; 4) the alveolar oxygen tension (PAO2 ) should be measured by sampling the expired gas; 5) a finite specific conductance in the blood for NO (θNO) should be assumed as 4.5 mL·min-1·mmHg-1·mL-1 of blood; 6) the equation for 1/θCO should be (0.0062·PAO2 +1.16)·(ideal haemoglobin/measured haemoglobin) based on breath-holding PAO2 and adjusted to an average haemoglobin concentration (male 14.6 g·dL-1, female 13.4 g·dL-1); 7) a membrane diffusing capacity ratio (DMNO/DMCO) should be 1.97, based on tissue diffusivity.


Assuntos
Volume Sanguíneo , Óxido Nítrico/sangue , Alvéolos Pulmonares/irrigação sanguínea , Capacidade de Difusão Pulmonar/normas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Permeabilidade Capilar , Monóxido de Carbono/sangue , Feminino , Hemoglobinas/análise , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Adulto Jovem
7.
Cell Tissue Res ; 367(3): 687-705, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28084523

RESUMO

This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.


Assuntos
Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Mecanotransdução Celular , Transdução de Sinais , Animais , Regeneração , Pesquisa Translacional Biomédica
9.
Nanomedicine ; 12(3): 811-821, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26518603

RESUMO

Our goals were to develop and establish nanoparticle (NP)-facilitated inhalational gene delivery, and to validate its biomedical application by testing the hypothesis that targeted upregulation of pulmonary erythropoietin receptor (EpoR) expression protects against lung injury. Poly-lactic-co-glycolic acid (PLGA) NPs encapsulating various tracers were characterized and nebulizated into rat lungs. Widespread NP uptake and distribution within alveolar cells were visualized by magnetic resonance imaging, and fluorescent and electron microscopy. Inhalation of nebulized NPs bearing EpoR cDNA upregulated pulmonary EpoR expression and downstream signal transduction (ERK1/2 and STAT5 phosphorylation) in rats for up to 21 days, and attenuated hyperoxia-induced damage in lung tissue based on apoptosis, oxidative damage of DNA, protein and lipid, tissue edema, and alveolar morphology compared to vector-treated control animals. These results establish the feasibility and therapeutic efficacy of NP-facilitated cDNA delivery to the lung, and demonstrate that targeted pulmonary EpoR upregulation mitigates acute oxidative lung damage. FROM THE CLINICAL EDITOR: Acute lung injury often results in significant morbidity and mortality, and current therapeutic modalities have proven to be ineffective. In this article, the authors developed nanocarrier based gene therapy in an attempt to upregulate the expression of pulmonary erythropoietin receptor in an animal model. Inhalation delivery resulted in reduction of lung damage.


Assuntos
DNA Complementar/uso terapêutico , Hiperóxia/terapia , Ácido Láctico/química , Lesão Pulmonar/terapia , Pulmão/patologia , Nanopartículas/química , Ácido Poliglicólico/química , Receptores da Eritropoetina/genética , Administração por Inalação , Animais , Linhagem Celular , DNA Complementar/administração & dosagem , DNA Complementar/genética , Técnicas de Transferência de Genes , Humanos , Hiperóxia/genética , Hiperóxia/patologia , Pulmão/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Regulação para Cima
10.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L566-75, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063799

RESUMO

α-Klotho exerts pleiotropic biological actions. Heterozygous α-Klotho haplo-insufficient mice (kl/+) appear normal at baseline except for age-related changes in the lung, suggesting heightened pulmonary susceptibility to α-Klotho deficiency. We used in vivo and in vitro models to test whether α-Klotho protects lung epithelia against injury. Normally, α-Klotho is not expressed in the lung, but circulating α-Klotho levels are reduced -40% in kl/+ mice and undetectable in homozygous α-Klotho-deficient mice (kl/kl). kl/+ mice show distal air space enlargement at a given airway pressure, with elevated lung oxidative damage marker (8-hydroxydeoxyguanosine; 8-OHdG); these abnormalities are exacerbated in kl/kl mice. Studies were performed in A549 lung epithelial cells and/or primary culture of alveolar epithelial cells. Hyperoxia (95% O2) and high inorganic phosphate concentrations (Pi, 3-5 mM) additively caused cell injury (lactate dehydrogenase release), oxidative DNA damage (8-OHdG), lipid oxidation (8-isoprostane), protein oxidation (carbonyl), and apoptosis (caspase-8 activity and TUNEL stain). Transfection of transmembrane or soluble α-Klotho, or addition of soluble α-Klotho-containing conditioned media, increased cellular antioxidant capacity (Cu- and Fe-based assays) via increased nuclear factor erythroid-derived 2-related factors 1 and 2 (Nrf1/2) transcriptional activity and ameliorated hyperoxic and phosphotoxic injury. To validate the findings in vivo, we injected α-Klotho-containing conditioned media into rat peritoneum before and during hyperoxia exposure and found reduced alveolar interstitial edema and oxidative damage. We conclude that circulating α-Klotho protects the lung against oxidative damage and apoptosis partly via increasing endogenous antioxidative capacity in pulmonary epithelia. Cytoprotection by α-Klotho may play an important role in degenerative diseases of the lung.


Assuntos
Glucuronidase/fisiologia , Estresse Oxidativo , Mucosa Respiratória/metabolismo , Animais , Elementos de Resposta Antioxidante , Apoptose , Linhagem Celular Tumoral , Dano ao DNA , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Proteínas Klotho , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Oxirredução , Oxigênio/metabolismo , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/patologia
11.
Chest ; 163(4): 881-890, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36356657

RESUMO

BACKGROUND: Pulmonary sarcoidosis is characterized by the accumulation of immune cells that form granulomas affecting the lungs. Efzofitimod (ATYR1923), a novel immunomodulator, selectively binds neuropilin 2, which is upregulated on immune cells in response to lung inflammation. RESEARCH QUESTION: What is the tolerability, safety, and effect on outcomes of efzofitimod in pulmonary sarcoidosis? STUDY DESIGN AND METHODS: In this randomized, double-blind, placebo-controlled study evaluating multiple ascending doses of efzofitimod administered intravenously every 4 weeks for 24 weeks, randomized patients (2:1) underwent a steroid taper to 5 mg/d by week 8 or < 5 mg/d after week 16. The primary end point was the incidence of adverse events (AEs); secondary end points included steroid reduction, change in lung function, and patient-reported outcomes on health-related quality-of-life scales. RESULTS: Thirty-seven patients received at least one dose of study medication. Efzofitimod was well tolerated at all doses, with no new or unexpected AEs and no dose-dependent AE incidence. Average daily steroid doses through end of study were 6.8 mg, 6.5 mg, and 5.6 mg for the 1 mg/kg, 3 mg/kg, and 5 mg/kg groups compared with 7.2 mg for placebo, resulting in a baseline-adjusted relative steroid reduction of 5%, 9%, and 22%, respectively. Clinically meaningful improvements were achieved across several patient-reported outcomes, several of which reached statistical significance in the 5 mg/kg dose arm. A dose-dependent but nonsignificant trend toward improved lung function also was observed for 3 and 5 mg/kg. INTERPRETATION: Efzofitimod was safe and well tolerated and was associated with dose-dependent improvements of several clinically relevant end points compared with placebo. The results of this study support further evaluation of efzofitimod in pulmonary sarcoidosis. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03824392; URL: www. CLINICALTRIALS: gov.


Assuntos
Sarcoidose Pulmonar , Humanos , Sarcoidose Pulmonar/tratamento farmacológico , Pulmão
12.
Ann Am Thorac Soc ; 20(2): 161-195, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36723475

RESUMO

Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.


Assuntos
Pneumopatias , Enfisema Pulmonar , Humanos , Benchmarking , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Respiração , Imageamento por Ressonância Magnética/métodos
13.
Proc Natl Acad Sci U S A ; 105(21): 7612-7, 2008 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-18495932

RESUMO

We previously found increased erythropoietin receptor (EPO-R) protein levels in vigorously growing canine lungs after pneumonectomy (PNX), suggesting a role for paracrine EPO signaling in lung growth and remodeling. Now we find that sense and antisense EPO-R transcripts (sEPO-R and asEPO-R, respectively) are concordantly up-regulated in the post-PNX remaining lung, leading to the hypothesis that sEPO-R and asEPO-R interactions enhance EPO signaling during lung growth. We cloned a canine asEPO-R cDNA, which is fully complementary to the sense strand of the EPO-R gene from 2.5kb 3' to the sense stop codon, and extends into the 5' UTR of the sEPO-R transcript. Both asEPO-R and sEPO-R transcripts colocalize with EPO-R protein in the same lung cells. In cultured human embryonic kidney (HEK293) cells, transfection with sEPO-R (+FLAG tag) cDNA alone increased EPO-R protein expression (anti-EPO-R and anti-FLAG). At constant sEPO-R cDNA levels, cotransfection with escalating asEPO-R cDNA further increased recombinant EPO-R protein expression. The asEPO-R transcript harbors two putative opening reading frames (ORFs). Separate transfection of each asEPO-R ORF cDNA resulted in differential stimulatory effects on EPO-R protein expression. We conclude that both sEPO-R and asEPO-R transcripts contribute to in vivo up-regulation of EPO-R protein expression in the post-PNX remaining lung. This demonstrates synergism between sense-antisense EPO-R transcripts in response to physiological stimulation in a robust model of induced lung growth.


Assuntos
Pulmão/crescimento & desenvolvimento , Biossíntese de Proteínas , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , Receptores da Eritropoetina/biossíntese , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , Cães , Humanos , Pulmão/química , Pulmão/metabolismo , Dados de Sequência Molecular , Fases de Leitura Aberta , Biossíntese de Proteínas/genética , RNA Mensageiro/análise , Receptores da Eritropoetina/análise , Receptores da Eritropoetina/genética , Transcrição Gênica , Regulação para Cima
14.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34435029

RESUMO

In Europe, two commercial devices are available to measure combined single-breath diffusing capacity of the lung for nitric oxide (D LNO) and carbon monoxide (D LCO) in one manoeuvre. Reference values were derived by pooling datasets from both devices, but agreement between devices has not been established. We conducted a randomised crossover trial in 35 healthy adults (age 40.0±15.5 years, 51% female) to compare D LNO (primary end-point) between MasterScreen™ (Vyaire Medical, Mettawa, IL, USA) and HypAir (Medisoft, Dinant, Belgium) devices during a single visit under controlled conditions. Linear mixed models were used adjusting for device and period as fixed effects and random intercept for each participant. Difference in D LNO between HypAir and MasterScreen was 24.0 mL·min-1·mmHg-1 (95% CI 21.7-26.3). There was no difference in D LCO (-0.03 mL·min-1·mmHg-1, 95% CI -0.57-0.12) between devices while alveolar volume (V A) was higher on HypAir compared to MasterScreen™ (0.48 L, 95% CI 0.45-0.52). Disparity in the estimation of V A and the rate of NO uptake (KNO=D LNO/V A) could explain the discrepancy in D LNO between devices. Disparity in the estimation of V A and the rate of CO uptake (KCO=D LCO/V A) per unit of V A offset each other resulting in negligible discrepancy in D LCO between devices. Differences in methods of expiratory gas sampling and sensor specifications between devices likely explain these observations. These findings have important implications for derivation of D LNO reference values and comparison of results across studies. Until this issue is resolved, reference values, established on the respective devices, should be used for test interpretation.

15.
Am J Physiol Lung Cell Mol Physiol ; 298(3): L392-403, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061442

RESUMO

Pulmonary dysfunction develops in type 2 diabetes mellitus (T2DM) in direct correlation with glycemia and is exacerbated by obesity; however, the associated structural derangement has not been quantified. We studied lungs from obese diabetic (fa/fa) male Zucker diabetic fatty (ZDF) rats at 4, 12, and 36 wk of age, before and after onset of T2DM, compared with lean nondiabetic (+/+) rats. Surfactant proteins A and C (SP-A and SP-C) immunoexpression in lung tissue was quantified at ages 14 and 18 wk, after the onset of T2DM. In fa/fa animals, lung volume was normal despite obesity. Numerous lipid droplets were visible within alveolar interstitium, lipofibroblasts, and macrophages, particularly in subpleural regions. Total triglyceride content was 136% higher. By 12 wk, septum volume was 21% higher, and alveolar duct volume was 36% lower. Capillary basement membrane was 29% thicker. Volume of lamellar bodies was 45% higher. By age 36 wk, volumes of interstitial collagen fibers, cells, and matrix were respectively 32, 25, and 80% higher, and capillary blood volume was 18% lower. ZDF rats exhibited a strain-specific increase in resistance of the air-blood diffusion barrier with age, which was exaggerated in fa/fa lungs compared with +/+ lungs. In fa/fa lungs, SP-A and SP-C expression were elevated at age 14-18 wk; the normal age-related increase in SP-A expression was accelerated, whereas SP-C expression declined with age. Thus lungs from obese T2DM animals develop many qualitatively similar changes as in type 1 diabetes mellitus but with extensive lipid deposition, altered alveolar type 2 cell ultrastructure, and surfactant protein expression patterns that suggest additive effects of hyperglycemia and lipotoxicity.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Obesidade/complicações , Obesidade/patologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Surfactantes Pulmonares/metabolismo , Envelhecimento/patologia , Animais , Tamanho do Órgão , Alvéolos Pulmonares/ultraestrutura , Ratos , Ratos Zucker , Propriedades de Superfície , Magreza , Triglicerídeos/metabolismo
16.
J Appl Physiol (1985) ; 129(5): 1051-1061, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909918

RESUMO

Cell-free secretory products (secretome) of human induced pluripotent stem cells (iPSCs) have been shown to attenuate tissue injury and facilitate repair and recovery. To examine whether iPSC secretome facilitates mechanically induced compensatory responses following unilateral pneumonectomy (PNX), litter-matched young adult female hounds underwent right PNX (removing 55%-58% of lung units), followed by inhalational delivery of either the nebulized-conditioned media containing induced pluripotent stem cell secretome (iPSC CM) or control cell-free media (CFM); inhalation was repeated every 5 days for 10 treatments. Lung function was measured under anesthesia pre-PNX and 10 days after the last treatment (8 wk post-PNX); detailed quantitative analysis of lung ultrastructure was performed postmortem. Pre-PNX lung function was similar between groups. Compared with CFM control, treatment with iPSC CM attenuated the post-PNX decline in lung diffusing capacity for carbon monoxide and membrane diffusing capacity, accompanied by a 24% larger postmortem lobar volume and distal air spaces. Alveolar double-capillary profiles were 39% more prevalent consistent with enhanced intussusceptive angiogenesis. Frequency distribution of the harmonic mean thickness of alveolar blood-gas barrier shifted toward the lowest values, whereas alveolar septal tissue volume and arithmetic septal thickness were similar, indicating septal remodeling and reduced diffusive resistance of the blood-gas barrier. Thus, repetitive inhalational delivery of iPSC secretome enhanced post-PNX alveolar angiogenesis and septal remodeling that are associated with improved gas exchange compensation. Results highlight the plasticity of the remaining lung units following major loss of lung mass that are responsive to broad-based modulation provided by the iPSC secretome.NEW & NOTEWORTHY To examine whether the secreted products of human induced pluripotent stem cells (iPSCs) facilitate innate adaptive responses following loss of lung tissue, adult dogs underwent surgical removal of one lung, then received repeated administration of iPSC secretory products via inhalational delivery compared with control treatment. Inhalation of iPSC secretory products enhanced capillary formation and beneficial structural remodeling in the remaining lung, leading to improved lung function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pulmão , Pneumonectomia , Animais , Cães , Feminino , Humanos , Pulmão/fisiologia , Pulmão/cirurgia , Medidas de Volume Pulmonar , Capacidade de Difusão Pulmonar
17.
J Appl Physiol (1985) ; 128(5): 1093-1105, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31944885

RESUMO

Mechanical stresses on the lung impose the major stimuli for developmental and compensatory lung growth and remodeling. We used computed tomography (CT) to noninvasively characterize the factors influencing lobar mechanical deformation in relation to posture, pneumonectomy (PNX), and exogenous proangiogenic factor supplementation. Post-PNX adult canines received weekly inhalations of nebulized nanoparticles loaded with recombinant human erythropoietin (EPO) or control (empty nanoparticles) for 16 wk. Supine and prone CT were performed at two transpulmonary pressures pre- and post-PNX following treatment. Lobar air and tissue volumes, fractional tissue volume (FTV), specific compliance (Cs), mechanical strains, and shear distortion were quantified. From supine to prone, lobar volume and Cs increased while strain and shear magnitudes generally decreased. From pre- to post-PNX, air volume increased less and FTV and Cs increased more in the left caudal (LCa) than in other lobes. FTV increased most in the dependent subpleural regions, and the portion of LCa lobe that expanded laterally wrapping around the mediastinum. Supine deformation was nonuniform pre- and post-PNX; strains and shear were most pronounced in LCa lobe and declined when prone. Despite nonuniform regional expansion and deformation, post-PNX lobar mechanics were well preserved compared with pre-PNX because of robust lung growth and remodeling establishing a new mechanical equilibrium. EPO treatment eliminated posture-dependent changes in FTV, accentuated the post-PNX increase in FTV, and reduced FTV heterogeneity without altering absolute air or tissue volumes, consistent with improved microvascular blood volume distribution and modestly enhanced post-PNX alveolar microvascular reserves.NEW & NOTEWORTHY Mechanical stresses on the lung impose the major stimuli for lung growth. We used computed tomography to image deformation of the lung in relation to posture, loss of lung units, and inhalational delivery of the growth promoter erythropoietin. Following loss of one lung in adult large animals, the remaining lung expanded and grew while retaining near-normal mechanical properties. Inhalation of erythropoietin promoted more uniform distribution of blood volume within the remaining lung.


Assuntos
Eritropoetina , Pneumonectomia , Animais , Cães , Humanos , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Postura
18.
FASEB Bioadv ; 1(11): 675-687, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32123814

RESUMO

Alpha-Klotho (αKlotho), produced by the kidney and selected organs, is essential for tissue maintenance and protection. Homozygous αKlotho-deficiency leads to premature multi-organ degeneration and death; heterozygous insufficiency leads to apoptosis, oxidative stress, and increased injury susceptibility. There is inconsistent data in the literature regarding whether αKlotho is produced locally in the lung or derived from circulation. We probed murine and human lung by immunohistochemistry (IHC) and immunoblot (IB) using two monoclonal (anti-αKlotho Kl1 and Kl2 domains) and three other common commercial antibodies. Monoclonal anti-Kl1 and anti-Kl2 yielded no labeling in lung on IHC or IB; specific labeling was observed in kidney (positive control) and also murine lungs following tracheal delivery of αKlotho cDNA, demonstrating specificity and ability to detect artificial pulmonary expression. Other commercial antibodies labeled numerous lung structures (IHC) and multiple bands (IB) incompatible with known αKlotho mobility; labeling was not abolished by blocking with purified αKlotho or using lungs from hypomorphic αKlotho-deficient mice, indicating nonspecificity. Results highlight the need for rigorous validation of reagents. The lung lacks native αKlotho expression and derives full-length αKlotho from circulation; findings could explain susceptibility to lung injury in extrapulmonary pathology associated with reduced circulating αKlotho levels, for example, renal failure. Conversely, αKlotho may be artificially expressed in the lung, suggesting therapeutic opportunities.

19.
J Appl Physiol (1985) ; 105(1): 316-21, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18483171

RESUMO

Noninvasive techniques for assessing cardiopulmonary function in small animals are limited. We previously developed a rebreathing technique for measuring lung volume, pulmonary blood flow, diffusing capacity for carbon monoxide (Dl(CO)) and its components, membrane diffusing capacity (Dm(CO)) and pulmonary capillary blood volume (Vc), and septal volume, in conscious nonsedated guinea pigs at rest. Now we have extended this technique to study guinea pigs during voluntary treadmill exercise with a sealed respiratory mask attached to a body vest and a test gas mixture containing 0.5% SF(6) or Ne, 0.3% CO, and 0.8% C(2)H(2) in 40% or 98% O(2). From rest to exercise, O(2) uptake increased from 12.7 to 25.5 ml x min(-1) x kg(-1) while pulmonary blood flow increased from 123 to 239 ml/kg. The measured Dl(CO), Dm(CO), and Vc increased linearly with respect to pulmonary blood flow as expected from alveolar microvascular recruitment; body mass-specific relationships were consistent with those in healthy human subjects and dogs studied with a similar technique. The results show that 1) cardiopulmonary interactions from rest to exercise can be measured noninvasively in guinea pigs, 2) guinea pigs exhibit patterns of exercise response and alveolar microvascular recruitment similar to those of larger species, and 3) the rebreathing technique is widely applicable to human ( approximately 70 kg), dog (20-30 kg), and guinea pig (1-1.5 kg). In theory, this technique can be extended to even smaller animals provided that species-specific technical hurdles can be overcome.


Assuntos
Condicionamento Físico Animal/fisiologia , Capacidade de Difusão Pulmonar/métodos , Capacidade de Difusão Pulmonar/fisiologia , Animais , Volume Sanguíneo/fisiologia , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Capilares/fisiologia , Monóxido de Carbono/metabolismo , Cobaias , Masculino , Consumo de Oxigênio/fisiologia , Perfusão , Circulação Pulmonar/fisiologia , Troca Gasosa Pulmonar/fisiologia
20.
J Appl Physiol (1985) ; 104(4): 1069-79, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18258800

RESUMO

We previously found that, following surgical resection of approximately 58% of lung units by right pneumonectomy (PNX) in adult canines, oxygen-diffusing capacity (Dl(O(2))) fell sufficiently to become a major factor limiting exercise capacity, although the decline was mitigated by recruitment, remodeling, and growth of the remaining lung units. To determine whether an upper limit of compensation is reached following the loss of even more lung units, we measured pulmonary gas exchange, hemodynamics, and ventilatory power requirements in adult canines during treadmill exercise following two-stage resection of approximately 70% of lung units in the presence or absence of mediastinal distortion. Results were compared with that in control animals following right PNX or thoracotomy without resection (Sham). Following 70% lung resection, peak O(2) uptake was 45% below normal. Ventilation-perfusion mismatch developed, and pulmonary arterial pressure and ventilatory power requirements became markedly elevated. In contrast, the relationship of Dl(O(2)) to cardiac output remained normal, indicating preservation of Dl(O(2))-to-cardiac output ratio and alveolar-capillary recruitment up to peak exercise. The impairment in airway and vascular function exceeded the impairment in gas exchange and imposed the major limitation to exercise following 70% resection. Mediastinal distortion further reduced air and blood flow conductance, resulting in CO(2) retention. Results suggest that adaptation of extra-acinar airways and blood vessels lagged behind that of acinar tissue. As more lung units were lost, functional compensation became limited by the disproportionately reduced convective conductance rather than by alveolar diffusion disequilibrium.


Assuntos
Pulmão/fisiologia , Pulmão/cirurgia , Pneumonectomia/efeitos adversos , Testes de Função Respiratória , Limiar Anaeróbio , Animais , Capilares/fisiologia , Débito Cardíaco/fisiologia , Artérias Carótidas/fisiologia , Difusão , Cães , Gases Nobres , Oxigênio/sangue , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal/fisiologia , Alvéolos Pulmonares/fisiologia , Circulação Pulmonar/fisiologia , Capacidade de Difusão Pulmonar/fisiologia , Troca Gasosa Pulmonar/fisiologia , Pressão Propulsora Pulmonar/fisiologia , Músculos Respiratórios/fisiologia , Tomografia Computadorizada por Raios X , Trabalho Respiratório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA