Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Am Chem Soc ; 146(1): 833-848, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113458

RESUMO

The high-performance Y6-based nonfullerene acceptors (NFAs) feature a C-shaped A-DA'D-A-type molecular architecture with a central electron-deficient thiadiazole (Tz) A' unit. In this work, we designed and synthesized a new A-D-A-type NFA, termed CB16, having a C-shaped ortho-benzodipyrrole-based skeleton of Y6 but with the Tz unit eliminated. When processed with nonhalogenated xylene without using any additives, the binary PM6:CB16 devices display a remarkable power conversion efficiency (PCE) of 18.32% with a high open-circuit voltage (Voc) of 0.92 V, surpassing the performance of the corresponding Y6-based devices. In contrast, similarly synthesized SB16, featuring an S-shaped para-benzodipyrrole-based skeleton, yields a low PCE of 0.15% due to the strong side-chain aggregation of SB16. The C-shaped A-DNBND-A skeleton in CB16 and the Y6-series NFAs constitutes the essential structural foundation for achieving exceptional device performance. The central Tz moiety or other A' units can be employed to finely adjust intermolecular interactions. The single-crystal X-ray structure reveals that ortho-benzodipyrrole-embedded A-DNBND-A plays an important role in the formation of a 3D elliptical network packing for efficient charge transport. Solution structures of the PM6:NFAs detected by small- and wide-angle X-ray scattering (SWAXS) indicate that removing the Tz unit in the C-shaped skeleton could reduce the self-packing of CB16, thereby enhancing the complexing and networking with PM6 in the spin-coating solution and the subsequent device film. Elucidating the structure-property-performance relationships of A-DA'D-A-type NFAs in this work paves the way for the future development of structurally simplified A-D-A-type NFAs.

2.
Small ; 17(24): e2101133, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34013657

RESUMO

Improving power conversion efficiencies (PCEs) and stability are two main tasks for organic photovoltaic (OPV) cells. In the past few years, although the PCE of the OPV cells has been considerably improved, the research on device stability is limited. Herein, a cross-linkable material, cross-linked [6,6]-phenyl-C61-butyric styryl dendron ester (c-PCBSD), is applied as an interfacial modification layer on the surface of zinc oxide and as the third component into the PBDB-TF:Y6-based OPV cells to enhance photovoltaic performance and long-term stability. The PCE of the OPV cells that underwent the two-step modification increased from 15.1 to 16.1%. In particular, such OPV cells exhibited much better stability under both thermal and air conditions because of the decreased number of interfacial defects and stable interfacial and active layer morphologies. The results demonstrated that the introduction of a cross-linkable fullerene derivative into the interfacial and active layers is a feasible method to improve the PCE and stability of OPV cells.

3.
Adv Funct Mater ; 27(13)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29046623

RESUMO

The development of nanotheranostic agents that integrate diagnosis and therapy for effective personalized precision medicine has obtained tremendous attention in the past few decades. In this report, biocompatible electron donor-acceptor conjugated semiconducting polymer nanoparticles (PPor-PEG NPs) with light-harvesting unit is prepared and developed for highly effective photoacoustic imaging guided photothermal therapy. To the best of our knowledge, it is the first time that the concept of light-harvesting unit is exploited for enhancing the photoacoustic signal and photothermal energy conversion in polymer-based theranostic agent. Combined with additional merits including donor-acceptor pair to favor electron transfer and fluorescence quenching effect after NP formation, the photothermal conversion efficiency of the PPor-PEG NPs is determined to be 62.3%, which is the highest value among reported polymer NPs. Moreover, the as-prepared PPor-PEG NP not only exhibits a remarkable cell-killing ability but also achieves 100% tumor elimination, demonstrating its excellent photothermal therapeutic efficacy. Finally, the as-prepared water-dispersible PPor-PEG NPs show good biocompatibility and biosafety, making them a promising candidate for future clinical applications in cancer theranostics.

4.
Chem Soc Rev ; 44(5): 1113-54, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25322211

RESUMO

Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

5.
J Am Chem Soc ; 137(2): 807-19, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25549011

RESUMO

Simple synthetic methods for a strongly electron-accepting naphthalene bisimide (NBI) derivative functionalized with a new environmentally friendly chiral racemic semifluorinated alkyl group and with AB3 minidendrons containing the same semifluorinated group are reported. The semifluorinated dendron was attached to the imide groups of the NBI via one, two, and three (m = 1, 2, 3) methylenic units. The NBI-containing semifluorinated groups and the dendronized NBI with m = 1 and 2 self-organize into lamellar crystals. The dendronized NBI with m = 3 self-assembles into an unprecedentedly complex and ordered column that self-organizes in a columnar hexagonal periodic array. This array undergoes a continuous transition to a columnar hexagonal superlattice that does not display a first-order phase transition during analysis by differential scanning calorimetry at heating and cooling rates of 10 and 1 °C/min. These complex columnar hexagonal periodic arrays with intramolecular order could be elucidated only by a combination of powder and fiber X-ray diffraction studies and solid-state NMR experiments. The lamellar crystals self-organized from m = 1 and the two highly ordered columnar hexagonal periodic arrays of m = 3 are assembled via thermodynamically controlled processes. Since strongly electron-accepting derivatives are of great interest to replace fullerene acceptors in organic photovoltaics and for other supramolecular electronic materials, the multitechnique structural analysis methodology elaborated here must be taken into consideration in all related studies.


Assuntos
Halogenação , Imidas/química , Naftalenos/química , Transporte de Elétrons , Química Verde , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Temperatura
6.
Macromol Rapid Commun ; 36(1): 84-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25420922

RESUMO

High-molecular-weight conjugated polymer HD-PDFC-DTBT with N-(2-hexyldecyl)-3,6-difluorocarbazole as the donor unit, 5,6-bis(octyloxy)benzothiadiazole as the acceptor unit, and thiophene as the spacer is synthesized by Suzuki polycondensation. HD-PDFC-DTBT shows a large bandgap of 1.96 eV and a high hole mobility of 0.16 cm(2) V(-1) s(-1) . HD-PDFC-DTBT:PC71 BM-based inverted polymer solar cells (PSCs) give a power conversion efficiency (PCE) of 7.39% with a Voc of 0.93 V, a Jsc of 14.11 mA cm(-2) , and an FF of 0.56.


Assuntos
Carbazóis/química , Polímeros/química , Tiofenos/química , Fontes de Energia Elétrica , Polimerização , Energia Solar , Luz Solar , Tiadiazóis/química
7.
Opt Express ; 22 Suppl 2: A481-90, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922257

RESUMO

This paper describes a promising approach toward preparing effective electrical and optical interconnections for tandem organic photovoltaic devices (OPVs). The first subcell featured a semi-transparent electrode, which allowed a portion of the solar irradiation to pass through and to enter the second subcell exhibiting complementary absorption behavior. The resulting multi-junction OPV had multiple contacts such that the subcells could be easily connected either in series or in parallel. More importantly, we used UV-curable epoxy to "mechanically" stack the two subcells and to eliminate the air gap between them, thereby reducing the optical loss induced by mismatches of refractive indices. Therefore, an improved power conversion efficiency of approximately 6.5% has been achieved.

8.
Langmuir ; 29(5): 1627-33, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23293950

RESUMO

This work presents a simple method to generate ordered chromophore/dispersant nanoarrays through a pore-filling process for a nanoporous polymer template to enhance chromophore luminescence. Fluorescence results combining with the morphological evolution examined by scanning probe microscopy reveal that the enhanced luminescence intensity reaches the maximum intensity as the nanopores of the template are completely filled by the chromophore/dispersant mixture. The variation is attributed to nanoscale spatial effect on the enhanced mixing efficiency of chromophore and dispersant, that is, the alleviation of self-quenching problem, as evidenced by the results of attenuated total reflection Fourier transform IR spectroscopy combining with grazing incident wide-angle X-ray diffraction. The enhanced luminescence of the chromophore/dispersant nanoarrays driven by the nanoscale spatial effect is highly promising for use in designing luminescent nanodevices.


Assuntos
Luminescência , Nanoestruturas/química , Nanotecnologia , Polímeros/química , Pirenos/química , Medições Luminescentes , Tamanho da Partícula , Porosidade , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 15(16): 20294-20301, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37058452

RESUMO

To investigate the relationship between molecular structures and spontaneous orientation polarization (SOP) in organic thin films, 2,5,8-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzo[1,2-b:3,4-b':5,6-b″] trithiophene (TPBTT) and its ethyl derivative (m-ethyl-TPBTT) were synthesized. Variable angle spectroscopic ellipsometry and two-dimensional grazing-incidence wide-angle X-ray scattering showed that the vacuum-deposited films of TPBTT and m-ethyl-TPBTT had a higher degree of molecular orientation parallel to the substrate compared with that of prototypical 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) due to the larger π-conjugated benzotrithiophene core. However, TPBTT films showed a lower SOP of +54.4 mV/nm than did the TPBi film (+77.3 mV/nm), indicating that the molecular orientation alone did not determine the SOP. In contrast, m-ethyl-TPBTT showed a larger SOP of +104.0 mV/nm in the film. Quantum chemical calculations based on density functional theory suggested that the differences in the stable molecular conformation and the permanent dipole moments between TPBTT and m-ethyl-TPBTT caused the differences in SOP. These results suggest that the simultaneous control of the orientational order and conformation of the molecules is important to achieving a large SOP in films.

10.
ACS Appl Mater Interfaces ; 15(23): 28817-28824, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37264593

RESUMO

Area-selective atomic layer deposition (AS-ALD) has drawn significant attention in the past decade because of the potential applications in bottom-up processing, which enables fabricating nanostructures at the atomic level without multiple patterning and lithographic processing that could easily cause alignment issues. Although AS-ALD has been demonstrated using various self-assembled monolayers (SAMs), it is still challenging to develop wet SAM deposition for AS-ALD that is suitable for industrial and semiconductor processes. In this work, we demonstrate highly effective AS-ALD of Al2O3 on Co/SiO2 patterned wafers using fluorinated thiol in both solution and vapor phase. Compared with conventional SAMs using alky-thiols, the fluorinated-thiol SAMs demonstrate greater blocking ability against ALD precursors owing to excellent hydrophobicity. Furthermore, much shorter deposition times can be achieved in vaporizable fluorinated thiol molecules, improving processing throughput and productivity. Most importantly, the SAM regeneration and redosing processes can further enhance the selectivity of AS-ALD, opening a promising avenue to realize the bottom-up approach in practical semiconductor applications.

11.
ACS Appl Mater Interfaces ; 15(1): 1718-1725, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548433

RESUMO

Developing new electron transport layers has been an effective way to fabricate high-performance bulk-heterojunction organic solar cells (OSCs). Resolving the longstanding problems associated with commonly used zinc oxide (ZnO), such as electron traps and light-induced device deterioration, however, is still a great challenge. In this study, glycerol diglycidyl ether (GDE) and 1,4-butanesultone (BS) are blended with polyethyleneimine (PEI) to produce cross-linkable PEI-based materials, PEI-GDE and PEI-GDE-BS, which can function as alternative electron transport layers to replace conventional ZnO cathode-modifying layers in inverted OSCs. PEI-GDE and PEI-GDE-BS are amendable to low-temperature annealing processes to produce cross-linked films. The inverted device structure of ITO/ETL/PM6:BTP-BO-4F:PC71BM/MoO3/Ag was used to evaluate the effects of incorporating PEI-GDE and PEI-GDE-BS as electron transport materials. Compared with ZnO-based devices, the PEI-GDE- and PEI-GDE-BS-based devices exhibit significant improvements in photovoltaic performances due to smoother surface roughness, higher charge collection and exciton dissociation efficiencies, higher electron mobilities, and stronger π-π interactions. In particular, a PEI-GDE-BS-based device shows an outstanding power conversion efficiency (PCE) of 17.55% with a VOC of 0.83 V, a JSC of 27.88 mA/cm2, and an FF of 75.96%, which offers great possibilities in the applications of flexible solar cells.

12.
ACS Appl Mater Interfaces ; 15(20): 24658-24669, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186869

RESUMO

Terminal acceptor atoms and side-chain functionalization play a vital role in the construction of efficient nonfullerene small-molecule acceptors (NF-SMAs) for AM1.5G/indoor organic photovoltaic (OPV) applications. In this work, we report three dithienosilicon-bridged carbazole-based (DTSiC) ladder-type (A-DD'D-A) NF-SMAs for AM1.5G/indoor OPVs. First, we synthesize DTSiC-4F and DTSiC-2M, which are composed of a fused DTSiC-based central core with difluorinated 1,1-dicyanomethylene-3-indanone (2F-IC) and methylated IC (M-IC) end groups, respectively. Then, alkoxy chains are introduced in the fused carbazole backbone of DTSiC-4F to form DTSiCODe-4F. From solution to film absorption, DTSiC-4F exhibits a bathochromic shift with strong π-π interactions, which improves the short-circuit current density (Jsc) and the fill factor (FF). On the other hand, DTSiC-2M and DTSiCODe-4F display up-shifting lowest unoccupied molecular orbital (LUMO) energy levels, which enhances the open-circuit voltage (Voc). As a result, under both AM1.5G/indoor conditions, the devices based on PM7:DTSiC-4F, PM7:DTSiC-2M, and PM7:DTSiCOCe-4F show power conversion efficiencies (PCEs) of 13.13/21.80%, 8.62/20.02, and 9.41/20.56%, respectively. Furthermore, the addition of a third component to the active layer of binary devices is also a simple and efficient strategy to achieve higher photovoltaic efficiencies. Therefore, the conjugated polymer donor PTO2 is introduced into the PM7:DTSiC-4F active layer because of the hypsochromically shifted complementary absorption, deep highest occupied molecular orbital (HOMO) energy level, good miscibility with PM7 and DTSiC-4F, and optimal film morphology. The resulting ternary OSC device based on PTO2:PM7:DTSiC-4F can improve exciton generation, phase separation, charge transport, and charge extraction. As a consequence, the PTO2:PM7:DTSiC-4F-based ternary device achieves an outstanding PCE of 13.33/25.70% under AM1.5G/indoor conditions. As far as we know, the obtained PCE results under indoor conditions are one of the best binary/ternary-based systems processed from eco-friendly solvents.

13.
ACS Appl Mater Interfaces ; 15(50): 58683-58692, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38073043

RESUMO

Alkoxy side chain engineering on the ß-position of the thienothiophene units of Y6 derivatives plays a vital role in improving photovoltaic performances with simultaneously increasing open-circuit voltage (Voc) and fill factor (FF). In this work, we prepared a series of asymmetric non-fullerene acceptors (NFAs) by introducing alkoxy side chains and phenoxy groups on the state-of-the-art Y6-derivative BTP-BO-4F. For the comparison, 2O-BO-4F with a symmetric alkoxy side chain on the outer thiophene units and BTP-PBO-4F with an asymmetric N-attached phenoxy alkyl chain on the pyrrole ring are synthesized from BTP-BO-4F. Thereafter, we construct four asymmetric NFAs by introducing different lengths of linear/branched alkoxy chains on the ß-position of the thienothiophene units of BTP-PBO-4F. The resulting NFAs, named L10-PBO, L12-PBO, B12-PBO, and B16-PBO (L = linear and B = branched alkoxy side chains), are collectively called OR-PBO-series. Unexpectedly, all OR-PBO NFAs exhibit strong edge-on molecular packing and weaker π-π interactions in the film state, which diminish the charge transfer in organic solar cell (OSC) devices. As a consequence, the optimal devices of OR-PBO-based binary blends show poor photovoltaic performances [power conversion efficiency (PCE) = 6.52-9.62%] in comparison with 2O-BO-4F (PCE = 12.42%) and BTP-PBO-4F (PCE = 15.30%) reference blends. Nevertheless, the OR-PBO-based binary devices show a higher Voc and smaller Vloss. Especially, B12-PBO- and B16-PBO-based devices achieve Voc over 1.00 V, which is the highest value of Y-series OSC devices to the best of our knowledge. Therefore, by utilizing higher Voc of OR-PBO binary blends, B12-PBO and B16-PBO are incorporated into the PM6:BTP-PBO-4F-based binary blend and fabricated ternary devices. As a result, the PM6:BTP-PBO-4F:B12-PBO ternary device delivers the best PCE of 15.60% with an increasing Voc and FF concurrently.

14.
Electrophoresis ; 33(16): 2475-81, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22899254

RESUMO

DEP is one of promising techniques for positioning nanomaterials into the desirable location for nanoelectronic applications. In contrast, the lithography technique is commonly used to make ultra-thin conducting wires and narrow gaps but, due to the limit of patterning resolution, it is not feasible to make electrical contacts on ultra-small nanomaterials for a bottom-up device fabrication. Thus, integrating the lithography and dielectrophoresis, a real bottom-up fabrication can be achieved. In this work, the device with the nanogap in between two nanofinger-electrodes is made using electron-beam lithography from top down and the ultra-small nanomaterials, such as colloidal PbSe quantum dots, polyaniline nanofibers, and reduced-graphene-oxide flakes, are placed in the nanogap by DEP from bottom up. The threshold electric field for the DEP placement of PbSe nanocrystals was roughly estimated to be about 8.3 × 10(4) V/cm under our experimental configuration. After the DEP process, several procedures for reducing contact resistances are attempted and measurements of intrinsic electron transport in versatile nanomaterials are performed. It is experimentally confirmed that electron transport in both PbSe nanocrystal arrays and polyaniline nanofibers agrees well with Prof. Ping Sheng's model of granular metallic conduction. In addition, electron transport in reduced-graphene-oxide flakes follows Mott's 2D variable-range-hopping model. This study illustrates an integration of the electron-beam lithography and the DEP techniques for a precise manipulation of nanomaterials into electronic circuits for characterization of intrinsic properties.


Assuntos
Eletroforese/métodos , Nanoestruturas/química , Compostos de Anilina/química , Grafite/química , Chumbo/química , Nanofibras/química , Pontos Quânticos , Compostos de Selênio/química
15.
Chemistry ; 18(29): 9091-8, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22689474

RESUMO

Herein, two asymmetric chiral bent-core molecules, 3-[(4-{[4-(heptyloxy)benzoyl]oxy}benzoyl)oxy]-phenyl-4-[(4-{[(1R)-1-methylheptyl]oxy}benzoyl)oxy] benzoate (BC7R) and 3-[(4-{[4-(heptyloxy)benzoyl]oxy}benzoyl)oxy]-phenyl-4-[(4-{[(1S)-1-methylheptyl]oxy}benzoyl)oxy] benzoate (BC7S), were synthesized to demonstrate control of the helicity of their self-assembled hierarchical superstructures. Mirror-imaged CD spectra showed a split-type Cotton effect after the formation of self-assembled aggregates of BC7R and BC7S, thereby suggesting the formation of intermolecular exciton couplets with opposite optical activities. Both twisted and helical ribbons with preferential helicity that corresponded to the twisting character of the intermolecular exciton couplet were found in the aggregates. The formation of helical ribbons was attributed to the merging of twisted ribbons through an increase in width to improve morphological stability. As a result, control of the helicity of hierarchical superstructures from the self-assembly of bent-core molecules could be achieved by taking advantage of the transfer of chiral information from the molecular level onto the hierarchical scale.

16.
ACS Appl Mater Interfaces ; 14(16): 18773-18781, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417123

RESUMO

Three isomeric derivatives of 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) bearing ethyl groups on the N-phenyl moieties were synthesized to elucidate the effects of intramolecular interactions on spontaneous orientation polarization (SOP) in thin films. The films of the TPBi derivatives displayed enhanced SOP with a surface potential change of up to 1.8 times that for TPBi, and the p-substituted derivative exhibited the largest potential change reported to date (+141.0 mV/nm). Density functional theory calculations and single-crystal structure analysis suggest that the introduction of the ethyl groups switched the stable molecular conformation from C1 to C3 symmetry. Through analysis of the structural anisotropy in the films by spectral ellipsometry and two-dimensional (2D) grazing-incidence wide-angle X-ray scattering, we conclude that the conformational change of the molecules was the major factor underlying the SOP enhancement.

17.
ACS Appl Mater Interfaces ; 14(19): 22353-22362, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35511580

RESUMO

The molecular design of wide-bandgap conjugated polymer donors (WB-CPDs) is a promising strategy for tuning the bulk heterojunction blend film morphologies to achieve high-performance organic photovoltaic (OPV) devices. Herein, we synthesize two WB-CPDs, namely, PBQ-H and PBQ-M, with and without methyl groups on the fused-dithieno[3,2-f:2',3'-h]quinoxaline (DTQx) moiety. We systematically investigate their structure-property relationship and OPV performances. The AFM and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) studies reveal that the PBQ-H:BO-4Cl BHJ blend shows strengthened aggregation behavior and stronger π-π stacking on face-on orientation compared with the PBQ-M:BO-4Cl BHJ blend, enhancing the phase separation, charge transport, and fill factor (FF). Blend film absorption spectra, however, show that the PBQ-H:BO-4Cl BHJ blend exhibits a lower absorption coefficient than that of the PBQ-M:BO-4Cl BHJ blend, which decreases the short-circuit current density (JSC). As a consequence, the optimized PBQ-H:BO-4Cl BHJ blend delivers a higher power conversion efficiency (PCE) of 12.88% with a JSC of 23.97 mA/cm2, an open-circuit voltage (VOC) of 0.86 V, and an FF of 62.46%, compared with the PBQ-M:BO-4Cl BHJ blend (PCE of 11.81% with a JSC of 24.78 mA/cm2, a VOC of 0.85 V, and an FF of 56.11%). Overall, this work demonstrates that alkyl group substitution on the DTQx moiety on the basis of WB-CPDs is critical for controlling the film morphology and thus obtaining high OPV performances.

18.
ACS Appl Mater Interfaces ; 14(1): 1187-1194, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958190

RESUMO

Power conversion efficiencies (PCEs) and device stability are two key technical factors restricting the commercialization of organic solar cells (OSCs). In the past decades, though the PCEs of OSCs have been significantly enhanced, device instability, especially in the state-of-the-art nonfullerene system, still needs to be solved. In this work, an effective crosslinker (namely, DTODF-4F), with conjugated fluorene-based backbone and crosslinkable epoxy side-chains, has been designed and synthesized, which is introduced to enhance the morphological stabilization of the PM6:Y6-based film. This crosslinker with two epoxy groups can be in situ crosslinked into a stable network structure under ultraviolet radiation. We demonstrate that DTODF-4F, which acted as a third component, can promote the exciton dissociation rate and reduce traps/defects, finally resulting in the enhancement of efficiency. In particular, the OSC devices exhibit better stability under continuous heating owing to the morphology fixation of the bulk heterojunction. This work drives the development direction of morphological stabilization to further improve the performance and stability of OSCs.

19.
ACS Appl Mater Interfaces ; 14(36): 41264-41274, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36041037

RESUMO

Molecular backbone modification, alkyl-chain engineering, and end-group functionalization are promising strategies for developing efficient high-performance non-fullerene acceptors (NFAs). Herein, two new NFAs, named TPQ-eC7-4F and TPQ-eC7-4Cl, are designed and synthesized. Both molecules have linear octyl chains on fused quinoxaline-containing heterocyclics as the central backbone and difluorinated (2F)/dichlorinated (2Cl) 1,1-dicyanomethylene-3-indanone (IC) as the end-group units. The influences of alkyl-chains on fused quinoxaline backbone and different halogenated end-groups on optical, electrochemical, and photovoltaic performances of organic solar cells (OSCs) are studied. In comparison with TPQ-eC7-4Cl, TPQ-eC7-4F exhibits blue-shifted absorptions with higher molar extinction coefficients in the film state as well as in the donor/acceptor (D/A) blend film state and up-shifting lowest unoccupied molecular orbital (LUMO) energy level. As a result, the OSC devices based on the PBDB-T:TPQ-eC7-4F display an outstanding power conversion efficiency (PCE) of 15.83% with a simultaneously increased open-circuit voltage (Voc) of 0.85 V, a short-circuit current-density (Jsc) of 25.89 mA cm-2, and a fill factor (FF) of 72.20%, whereas the PBDB-T:TPQ-eC7-4Cl-based OSC device shows a decent PCE of 14.48% with a Voc of 0.84 V, a Jsc of 24.56 mA/cm2, and an FF of 69.77%. To the best of our knowledge, this is the highest photovoltaic performance of PBDB-T-based single-junction binary-OSCs. In comparison, ascribed to the high crystallinity and low solubility of BTP-eC7-4Cl, the corresponding PBDB-T:BTP-eC7-4Cl-based OSC device shows poor photovoltaic performance (PCE of 11.87%). The experimental results demonstrate that fine-tuning the fused quinoxaline backbone with alkyl-chain and end-group functionalization are promising strategies to construct high-performance NFAs for PBDB-T-based single-junction binary-OSCs.

20.
ACS Appl Mater Interfaces ; 13(22): 26247-26255, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033470

RESUMO

In this work, two DTSiC-based nonfullerene acceptors (NFAs), (2,2'-((2Z,2'Z)-((12-(heptadecan-9-yl)-4,4,7,7-tetraoctyl-7,12-dihydro-4H-thieno[2',3':4,5]silolo[3,2-b]thieno[2',3':4,5]silolo[2,3-h]carbazole-2,9-diyl)bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) (DTSiC-IC) and (2,2'-((5Z,5'Z)-((12-(heptadecan-9-yl)-4,4,7,7-tetraoctyl-7,12-dihydro-4H-thieno[2',3':4,5]silolo[3,2-b]thieno[2',3':4,5]silolo[2,3-h]carbazole-2,9-diyl)bis(methaneylylidene))bis(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophene-5,4-diylidene))dimalononitrile) (DTSiC-TC), are designed with various end groups (IC and TC). To explore the effect of end-group modifications, photovoltaic performance under AM 1.5G and indoor conditions are comprehensively studied. Compared with DTSiC-IC, DTSiC-TC manifests red-shifted and stronger absorption, downshifted lowest unoccupied molecular orbital (LUMO), and pronounced face-on packing characteristics. As we envisaged, the PM7:DTSiC-TC-based devices outperform the PM7:DTSiC-IC-based devices in both AM 1.5G and indoor (light-emitting diode (LED) 3000 K 1000 lux) conditions with overall higher JSC, FF, and power conversion efficiency (PCE). Furthermore, the PM7:DTSiC-TC-based devices achieve an outstanding PCE of 20.73% with a VOC of 0.87 V, a JSC of 0.095 mA/cm2, and an FF of 70.86%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA