Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(12): e57164, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37965920

RESUMO

A high-salt diet (HSD) elicits sustained sterile inflammation and worsens tissue injury. However, how this occurs after stroke, a leading cause of morbidity and mortality, remains unknown. Here, we report that HSD impairs long-term brain recovery after intracerebral hemorrhage, a severe form of stroke, despite salt withdrawal prior to the injury. Mechanistically, HSD induces innate immune priming and training in hematopoietic stem and progenitor cells (HSPCs) by downregulation of NR4a family and mitochondrial oxidative phosphorylation. This training compromises alternative activation of monocyte-derived macrophages (MDMs) without altering the initial inflammatory responses of the stroke brain. Healthy mice transplanted with bone marrow from HSD-fed mice retain signatures of reduced MDM reparative functions, further confirming a persistent form of innate immune memory that originates in the bone marrow. Loss of NR4a1 in macrophages recapitulates HSD-induced negative impacts on stroke outcomes while gain of NR4a1 enables stroke recovery in HSD animals. Together, we provide the first evidence that links HSD-induced innate immune memory to the acquisition of persistent dysregulated inflammatory responses and unveils NR4a1 as a potential therapeutic target.


Assuntos
Acidente Vascular Cerebral , Imunidade Treinada , Camundongos , Animais , Macrófagos , Inflamação , Cloreto de Sódio na Dieta/efeitos adversos , Dieta , Imunidade Inata
2.
Nucleic Acids Res ; 51(D1): D1205-D1211, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36263784

RESUMO

Microbial communities are massively resident in the human body, yet dysbiosis has been reported to correlate with many diseases, including various cancers. Most studies focus on the gut microbiome, while the bacteria that participate in tumor microenvironments on site remain unclear. Previous studies have acquired the bacteria expression profiles from RNA-seq, whole genome sequencing, and whole exon sequencing in The Cancer Genome Atlas (TCGA). However, small-RNA sequencing data were rarely used. Using TCGA miRNA sequencing data, we evaluated bacterial abundance in 32 types of cancer. To uncover the bacteria involved in cancer, we applied an analytical process to align unmapped human reads to bacterial references and developed the BIC database for the transcriptional landscape of bacteria in cancer. BIC provides cancer-associated bacterial information, including the relative abundance of bacteria, bacterial diversity, associations with clinical relevance, the co-expression network of bacteria and human genes, and their associated biological functions. These results can complement previously published databases. Users can easily download the result plots and tables, or download the bacterial abundance matrix for further analyses. In summary, BIC can provide information on cancer microenvironments related to microbial communities. BIC is available at: http://bic.jhlab.tw/.


Assuntos
Bases de Dados Factuais , Microbiota , Neoplasias , Microambiente Tumoral , Humanos , Bactérias/genética , Bactérias/metabolismo , Microbioma Gastrointestinal/genética , Microbiota/genética , MicroRNAs/genética , Neoplasias/microbiologia , RNA Ribossômico 16S/genética
3.
J Pathol ; 259(4): 428-440, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36641765

RESUMO

Anti-programmed cell death 1 (anti-PD-1) therapy shows definite but modest activity in patients with advanced/metastatic head and neck squamous cell carcinoma (HNSCC). Preliminary evidence suggests that SN-38, an activated form of irinotecan that increases expression of the transcription factor FoxO3a, can suppress programmed cell death ligand-1 (PD-L1) expression in breast and ovarian tumor models. We analyzed the SN-38-mediated activation of natural killer cells in vitro and explored the efficacy of SN-38 in combination with anti-PD-1 for treatment in vivo. In vitro, SN-38 enhanced the expression of FoxO3a and reduced the expression of c-Myc and PD-L1 dose-dependently in tumor cells. Low-dose SN-38 increased interferon-γ secretion by NK cells and promoted NK cell-mediated cytotoxicity in tumor cells. In vivo studies revealed that at non-cytotoxic drug concentrations, SN-38 significantly enhanced anti-PD-1 activity in suppressing murine tumor growth. We found increased NK cell and CD8+ T-cell infiltration in post-treatment tumors. RNA-seq analysis indicated that SN-38 increased the enrichment of immune cells and biological function genes related to the immune responses. SN-38 is a potentially beneficial adjunct to checkpoint inhibitor therapy in HNSCC. Further studies exploring its mechanism of action and possible applications are necessary. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Camundongos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Irinotecano/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Resultado do Tratamento
4.
J Immunol ; 209(1): 69-76, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697385

RESUMO

Obesity is associated with increased cancer risk and weak responses to vaccination and sepsis treatment. Although dendritic cells (DCs) are fundamental for the initiation and maintenance of competent immune responses against pathogens and tumors, how obesity alters the normal physiology of these myeloid cells remains largely unexplored. In this study, we report that obesity caused by prolonged high-fat diet feeding disrupts the metabolic and functional status of mouse splenic DCs (SpDCs). High-fat diet-induced obesity drastically altered the global transcriptional profile of SpDCs, causing severe changes in the expression of gene programs implicated in lipid metabolism and mitochondrial function. SpDCs isolated from obese mice demonstrated enhanced mitochondrial respiration provoked by increased fatty acid oxidation (FAO), which drove the intracellular accumulation of reactive oxygen species that impaired Ag presentation to T cells. Accordingly, treatment with the FAO inhibitor etomoxir, or antioxidants such as vitamin E or N-acetyl-l-cysteine, restored the Ag-presenting capacity of SpDCs isolated from obese mice. Our findings reveal a major detrimental effect of obesity in DC physiology and suggest that controlling mitochondrial FAO or reactive oxygen species overproduction may help improve DC function in obese individuals.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos , Animais , Células Dendríticas , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Homeostase , Metabolismo dos Lipídeos , Camundongos , Camundongos Obesos , Mitocôndrias/metabolismo , Obesidade/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
5.
J Immunol ; 208(7): 1534-1544, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35264458

RESUMO

Recent evidence from several autoimmune animal models has demonstrated that TRAIL suppresses the activation of T cells and inhibits autoimmune inflammation via an apoptosis-independent pathway. However, it remains unclear whether the immunosuppressive effects of TRAIL are dependent on its direct effects on T cells or on other immune cells to regulate T cells for the induction of disease. Therefore, we generated mice with T cell-specific TRAIL receptor (TRAIL-R) conditional knockout to investigate the impact of TRAIL on autoimmune inflammation and disease induction in experimental autoimmune encephalomyelitis (EAE). T cell-specific TRAIL-R knockout mice were found to completely reverse the TRAIL-mediated suppression of inflammation and disease induction, indicating that TRAIL-R on T cells is essential for TRAIL-mediated suppression of inflammation and disease induction in EAE. Moreover, the immune suppression effects were not due to the induction of cell apoptosis, but to the direct inhibition of T cell activation. In addition, RNA sequencing and transcriptome analysis revealed that TRAIL-R signaling significantly downregulated the genes involved in TCR signaling pathways, T cell differentiation, and proinflammatory cytokines. These results indicate that TRAIL-R on T cells is critical for pathologic T cell activation and induction of inflammation in EAE, suggesting that TRAIL-R serves as a novel immune checkpoint receptor in T cell-mediated autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T , Ligante Indutor de Apoptose Relacionado a TNF
6.
Breast Cancer Res ; 25(1): 11, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707876

RESUMO

BACKGROUND: Metaplastic breast carcinoma (MpBC) typically consists of carcinoma of no special type (NST) with various metaplastic components. Although previous transcriptomic and proteomic studies have reported subtype-related heterogeneity, the intracase transcriptomic alterations between metaplastic components and paired NST components, which are critical for understanding the pathogenesis underlying the metaplastic processes, remain unclear. METHODS: Fifty-nine NST components and paired metaplastic components (spindle carcinomatous [SPS], matrix-producing, rhabdoid [RHA], and squamous carcinomatous [SQC] components) were microdissected from specimens obtained from 27 patients with MpBC for gene expression profiling using the NanoString Breast Cancer 360 Panel on a NanoString nCounter FLEX platform. BC360-defined signatures were scored using nSolver software. RESULTS: Hierarchical clustering and principal component analysis revealed a heterogeneous gene expression profile (GEP) corresponding to the NST components, but the GEP of metaplastic components exhibited subtype dependence. Compared with the paired NST components, the SPS components demonstrated the upregulation of genes related to stem cells and epithelial-mesenchymal transition and displayed enrichment in claudin-low and macrophage signatures. Despite certain overlaps in the enriched functions and signatures between the RHA and SPS components, the specific differentially expressed genes differed. We observed the RHA-specific upregulation of genes associated with vascular endothelial growth factor signaling. The chondroid matrix-producing components demonstrated the upregulation of hypoxia-related genes and the downregulation of the immune-related MHC2 signature and the TIGIT gene. In the SQC components, TGF-ß and genes associated with cell adhesion were upregulated. The differentially expressed genes among metaplastic components in the 22 MpBC cases with one or predominantly one metaplastic component clustered paired NST samples into clusters with correlation with their associated metaplastic types. These genes could be used to separate the 31 metaplastic components according to respective metaplastic types with an accuracy of 74.2%, suggesting that intrinsic signatures of NST may determine paired metaplastic type. Finally, the EMT activity and stem cell traits in the NST components were correlated with specimens displaying lymph node metastasis. CONCLUSIONS: We presented the distinct transcriptomic alterations underlying metaplasia into specific metaplastic components in MpBCs, which contributes to the understanding of the pathogenesis underlying morphologically distinct metaplasia in MpBCs.


Assuntos
Neoplasias da Mama , Carcinoma de Células Escamosas , Humanos , Feminino , Neoplasias da Mama/patologia , Transcriptoma , Proteômica , Fator A de Crescimento do Endotélio Vascular/genética , Perfilação da Expressão Gênica , Carcinoma de Células Escamosas/patologia , Metaplasia/genética
7.
Br J Cancer ; 128(9): 1753-1764, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810912

RESUMO

BACKGROUND: Although trimodality therapy resecting tumours followed by chemoradiotherapy is emerged for muscle-invasive bladder cancer (MIBC), chemotherapy produces toxicities. Histone deacetylase inhibitors have been identified as an effective strategy to enhance cancer radiotherapy (RT). METHODS: We examined the role of HDAC6 and specific inhibition of HDAC6 on BC radiosensitivity by performing transcriptomic analysis and mechanism study. RESULTS: HDAC6 knockdown or HDAC6 inhibitor (HDAC6i) tubacin exerted a radiosensitizing effect, including decreased clonogenic survival, increased H3K9ac and α-tubulin acetylation, and accumulated γH2AX, which are similar to the effect of panobinostat, a pan-HDACi, on irradiated BC cells. Transcriptomics of shHDAC6-transduced T24 under irradiation showed that shHDAC6 counteracted RT-induced mRNA expression of CXCL1, SERPINE1, SDC1 and SDC2, which are linked to cell migration, angiogenesis and metastasis. Moreover, tubacin significantly suppressed RT-induced CXCL1 and radiation-enhanced invasion/migration, whereas panobinostat elevated RT-induced CXCL1 expression and invasion/migration abilities. This phenotype was significantly abrogated by anti-CXCL1 antibody, indicating the key regulator of CXCL1 contributing to BC malignancy. Immunohistochemical evaluation of tumours from urothelial carcinoma patients supported the correlation between high CXCL1 expression and reduced survival. CONCLUSION: Unlike pan-HDACi, the selective HDAC6i can enhance BC radiosensitization and effectively inhibit RT-induced oncogenic CXCL1-Snail-signalling, thus further advancing its therapeutic potential with RT.


Assuntos
Carcinoma de Células de Transição , Desacetilase 6 de Histona , Tolerância a Radiação , Neoplasias da Bexiga Urinária , Humanos , Acetilação , Linhagem Celular Tumoral , Desacetilase 6 de Histona/genética , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Panobinostat/farmacologia , Tubulina (Proteína)/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/radioterapia
8.
Br J Cancer ; 128(1): 102-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319846

RESUMO

BACKGROUND: Prognosis of metastatic BRAF V600E mutant colorectal cancer (CRC) is poor, and the prognostic implications of immune contextures in the tumour microenvironment (TME) for CRC remain elusive. METHODS: We collected the primary tumour specimens and clinicopathological characteristics of patients with de novo metastatic microsatellite-stable BRAF V600E mutant CRC from two medical centres. Gene expression analysis was performed using the nCounterⓇ PanCancer Immune Profiling Panel. The Cox proportional hazards regression model was used for analysing survival outcomes in association with immune gene expression and immune cells. Our complement score was defined on the basis of the average gene expression in the selected co-expression module. RESULTS: High expression of classical and regulatory complement genes was significantly associated with poor prognosis (N = 54). A high complement score (defined as a score above the median value) indicated significantly shorter survival. The overall survival (OS) impact of the high score remained significant in multivariate analyses. Additionally, our complement score was strongly correlated with C4d expression in immunohistochemical staining and tumour-associated macrophage (TAM) M2 signatures. CONCLUSIONS: Complement activation in the TME was significantly associated with poor OS and was correlated with TAM M2 in patients with de novo metastatic BRAF V600E mutant CRC.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Retais , Humanos , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microambiente Tumoral/genética , Neoplasias Colorretais/patologia , Ativação do Complemento/genética , Mutação
9.
J Clin Immunol ; 44(1): 35, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153613

RESUMO

The diagnosis of adult-onset immunodeficiency syndrome associated with neutralizing anti-interferon γ autoantibodies (AIGA) presents substantial challenges to clinicians and pathologists due to its nonspecific clinical presentation, absence of routine laboratory tests, and resemblance to certain lymphoma types, notably nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI). Some patients undergo lymphadenectomy for histopathological examination to rule out lymphoma, even in the absence of a preceding clinical suspicion of AIGA. This study aimed to identify reliable methods to prevent misdiagnosis of AIGA in this scenario through a retrospective case-control analysis of clinical and pathological data, along with immune gene transcriptomes using the NanoString nCounter platform, to compare AIGA and nTFHL-AI. The investigation revealed a downregulation of the C-X-C motif chemokine ligand 9 (CXCL9) gene in AIGA, prompting an exploration of its diagnostic utility. Immunohistochemistry (IHC) targeting CXCL9 was performed on lymph node specimens to assess its potential as a diagnostic biomarker. The findings exhibited a significantly lower density of CXCL9-positive cells in AIGA compared to nTFHL-AI, displaying a high diagnostic accuracy of 92.3% sensitivity and 100% specificity. Furthermore, CXCL9 IHC demonstrated its ability to differentiate AIGA from various lymphomas sharing similar characteristics. In conclusion, CXCL9 IHC emerges as a robust biomarker for differentiating AIGA from nTFHL-AI and other similar conditions. This reliable diagnostic approach holds the potential to avert misdiagnosis of AIGA as lymphoma, providing timely and accurate diagnosis.


Assuntos
Linfadenopatia , Linfoma , Adulto , Humanos , Estudos Retrospectivos , Linfoma/diagnóstico , Autoanticorpos , Biomarcadores , Quimiocina CXCL9
10.
Hematol Oncol ; 41(3): 463-473, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36420747

RESUMO

Myelodysplastic syndromes (MDS) are a group of clinically and genetically diverse diseases that impose patients with an increased risk of leukemic transformation. While MDS is a disease of the elderly, the interplay between aging and molecular profiles is not fully understood, especially in the Asian population. Thus, we compared the genetic landscape between younger and older patients in a cohort of 698 patients with primary MDS to advance our understanding of the distinct pathogenesis and different survival impacts of gene mutations in MDS according to age. We found that the average mutation number was higher in the older patients than younger ones. The younger patients had more WT1 and CBL mutations, but less mutated ASXL1, DNMT3A, TET2, SF3B1, SRSF2, STAG2, and TP53 than the older patients. In multivariable survival analysis, RUNX1 mutations with higher variant allele frequency (VAF) and U2AF1 and TP53 mutations were independent poor prognostic indicators in the younger patients, whereas DNMT3A and IDH2 mutations with higher VAF and TP53 mutations conferred inferior outcomes in the older patients. In conclusion, we demonstrated the distinct genetic landscape between younger and older patients with MDS and suggested that mutations impact survival in an age-depended manner.


Assuntos
Síndromes Mielodisplásicas , Humanos , Idoso , Mutação , Prognóstico , Análise de Sobrevida , Síndromes Mielodisplásicas/patologia
11.
J Biomed Sci ; 30(1): 80, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726723

RESUMO

BACKGROUND: Metastasis is a multistep process involving the migration and invasion of cancer cells and is a hallmark of cancer malignancy. Long non-coding RNAs (lncRNAs) play critical roles in the regulation of metastasis. This study aims to elucidate the role of the lncRNA solute carrier organic anion transporter family member 4A1-antisense 1 (SLCO4A1-AS1) in metastasis and its underlying regulatory mechanisms. METHODS: A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify metastasis-associated lncRNAs. Transwell migration and invasion assays, and a tail vein-injection mouse model were used to assess the migration and invasion of cancer cells in vitro and in vivo, respectively. High-throughput screening methods, including MASS Spectrometry and RNA sequencing (RNA-seq), were used to identify the downstream targets of SLCO4A1-AS1. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blotting, RNA pull-down, RNA immunoprecipitation (RIP), fluorescence in situ hybridization (FISH), and chromatin immunoprecipitation (ChIp) assays were conducted to identify and validate the underlying regulatory mechanisms of SLCO4A1-AS1. RESULTS: SLCO4A1-AS1 reduced cancer cell migration and invasion by disrupting cytoskeleton filaments, and was associated with longer overall survival in patients with lung adenocarcinoma. SLCO4A1-AS1 directly interacted with the DNA-binding protein, TOX High Mobility Group Box Family Member 4 (TOX4), to inhibit TOX4-induced migration and invasion. Furthermore, RNA-seq revealed that neurotensin receptor 1 (NTSR1) is a novel and convergent downstream target of SLCO4A1-AS1 and TOX4. Mechanistically, SLCO4A1-AS1 functions as a decoy of TOX4 by interrupting its interaction with the NTSR1 promoter and preventing NTSR1 transcription. Functionally, NTSR1 promotes cancer cell migration and invasion through cytoskeletal remodeling, and knockdown of NTSR1 significantly inhibits TOX4-induced migration and invasion. CONCLUSION: These findings demonstrated that SLCO4A1-AS1 antagonizes TOX4/NTSR1 signaling, underscoring its pivotal role in lung cancer cell migration and invasion. These findings hold promise for the development of novel therapeutic strategies targeting the SLCO4A1-AS1/TOX4/NTSR1 axis as a potential avenue for effective therapeutic intervention in lung cancer.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Transdução de Sinais/genética , Pulmão
12.
J Pathol ; 258(4): 353-365, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36056608

RESUMO

A genetic hallmark of malignant germ cell tumours (GCTs) is isochromosome 12p, but oncogenes located in 12p that are specifically expressed in GCT have not yet been identified. SIN3-HDAC complex-associated factor (SINHCAF) is a subunit of the Sin3/histone deacetylase (HDAC) complex, and it defines a Sin3a-Hdac complex variant that is required for the self-renewal of mouse embryonic stem cells. This study demonstrated that SINHCAF is expressed in a vast majority of malignant GCTs and is rarely expressed in somatic malignancy. Fluorescence in situ hybridisation revealed SINHCAF amplification in malignant GCTs. SINHCAF silencing using shRNA reduced anchorage-dependent cell proliferation and tumoursphere formation and inhibited tumour cell migration and invasion in GCT cell lines. Moreover, in the GCT cell line NTERA2/D1, SINHCAF silencing inhibited the expression of genes associated with embryonic stem cells and induced the expression of genes associated with neuronal and white fat cell differentiation. Compared with somatic cell lines, GCT cell lines were more susceptible to HDAC inhibitor treatment. Thus, we identified SINHCAF to be a potential oncogene located in the amplicon of chromosome 12p and showed that SINHCAF was specifically expressed in malignant GCTs. HDAC inhibitor treatment may counteract the oncogenic activity of SINHCAF and is a promising therapeutic approach for GCTs. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Montagem e Desmontagem da Cromatina , Histona Desacetilases , Neoplasias Embrionárias de Células Germinativas , Humanos , Masculino , Montagem e Desmontagem da Cromatina/genética , Cromossomos Humanos Par 12/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Hibridização in Situ Fluorescente , Neoplasias Embrionárias de Células Germinativas/genética , Oncogenes
13.
Proc Natl Acad Sci U S A ; 117(12): 6717-6725, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32139604

RESUMO

Most hepatocellular carcinomas (HCCs) develop in patients with chronic hepatitis, which creates a microenvironment for the growth of hepatic progenitor cells (HPCs) at the periportal area and subsequent development of HCCs. We investigated the signal from the inflammatory liver for this pathogenic process in the hepatic conditional ß-catenin knockout mouse model. Senescent ß-catenin-depleted hepatocytes in aged mice create an inflammatory microenvironment that stimulates periportal HPC expansion but arrests differentiation, which predisposes mice to the development of liver tumors. The release of complement C1q from macrophages in the inflammatory niche was identified as the unorthodox signal that activated the ß-catenin pathway in periportal HPCs and was responsible for their expansion and de-differentiation. C1q inhibitors blocked the ß-catenin pathway in both the expanding HPCs and the liver tumors but spared its orthodox pathway in pericentral normal hepatocytes. This mechanism has been validated in human liver specimens from patients with chronic hepatitis. Taken together, these results demonstrate that C1q- mediated activation of ß-catenin pathway in periportal HPCs is a previously unrecognized mechanism for replenishing hepatocytes in the inflammatory liver and, if unchecked, for promoting hepatocarcinogenesis. C1q may become a new target for blocking carcinogenesis in patients with chronic hepatitis.


Assuntos
Carcinoma Hepatocelular/etiologia , Complemento C1q/metabolismo , Hepatite Crônica/complicações , Neoplasias Hepáticas/etiologia , Fígado/patologia , Células-Tronco/patologia , beta Catenina/fisiologia , Animais , Carcinogênese , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Senescência Celular , Humanos , Fígado/imunologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Células-Tronco/imunologia , Células-Tronco/metabolismo , Microambiente Tumoral
14.
Environ Toxicol ; 38(8): 1905-1913, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37126650

RESUMO

Pulmonary fibrosis is known as an incurable lung disorder with irreversible progression of chronic injury, myofibroblast proliferation, extracellular matrix (ECM) accumulation, and tissue scarring. Atmospheric particulate matter 2.5 (PM2.5 ) is implicated as a risk factor of several diseases, especially lung diseases such as pulmonary fibrosis. The molecular mechanism which participates PM2.5 -induced pulmonary fibrosis in type II alveolar cells (AEII) has yet to be determined. Our results proved that short- and long-term exposure to PM2.5 significantly stimulated epithelial-mesenchymal transition (EMT) activity in AEII cells, according to, changes in gene signature analyzed by RNA-seq and cell morphology. Furthermore, Gene Ontology (GO) enrichment analysis also suggested that mitochondrial dysfunction was related to progression of pulmonary fibrosis in AEII after PM2.5 exposure. We observed a marked decline in mitochondria membrane potential (MMP), as well as fragmented mitochondria, in AEII cells exposed to PM2.5 , which suggests that energy metabolism is suppressed after PM2.5 exposure. We also confirmed that PM2.5 exposure could influence the expression levels of Mfn1, Mfn2, and Drp1 in AEII. Pretreatment of mitochondrial fusion promoter M1 was able to reverse mitochondrial dysfunction as well as EMT in AEII. These data suggested the key role of mitochondrial fragmentation in AEII, which was induced by PM2.5 exposure, and participated pathogenesis of pulmonary fibrosis. Finally, we investigated the response of lung tissue exposed to PM2.5 in vivo. The data indicated that the lung tissue exposed to PM2.5 obviously induced collagen accumulation. Moreover, IHC results revealed that PM2.5 enhanced Drp1 expression but suppressed Mfn1 and Mfn2 expression in lung tissue. The current study provides novel insight of pulmonary fibrosis caused by PM2.5 exposure.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Pulmão/patologia , Material Particulado/toxicidade , Transição Epitelial-Mesenquimal , Mitocôndrias/metabolismo
15.
J Formos Med Assoc ; 122(7): 636-647, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36428148

RESUMO

BACKGROUND/PURPOSE: The S100 family proteins are involved in a variety of important biological processes, most notably immune and inflammatory responses. Their dysregulation also plays a role in the pathogenesis of human cancers. S100A4, also known as metastasin, has long been regarded as a biological marker in tumor progression and metastasis in multiple solid cancers, but its clinical significance in acute myeloid leukemia (AML) has not been extensively studied. METHODS: We retrospectively studied the association between S100A4 gene expression and the clinical characteristics, mutational and transcriptomic profiles of 227 AML patients treated with standard intensive chemotherapy. Genetic mutations of myeloid disease associated genes were analyzed by Sanger sequencing. Microarray-based transcriptomic gene expression profiling was performed on archived bone marrow mononuclear cells. Bioinformatic analyses, including differential gene expression and gene set enrichment analysis, were conducted to delineate the underlying pathogenic mechanisms. RESULTS: Higher S100A4 expression was associated with older age, monocytic differentiation of leukemic cells, and adverse clinical outcome. S100A4 high-expressors had inferior overall survival and disease-free survival; this finding could be validated in the TCGA AML cohort (both the microarray and RNA-seq platforms). Multivariate Cox regression analysis supported S100A4 as an independent prognostic factor. Bioinformatic analysis showed that AML with higher S100A4 expression was enriched for the interferon, NLRP3 inflammasome, and epithelial-mesenchymal transition pathways. CONCLUSION: This study provides evidence that S100A4 overexpression serves as a poor prognostic biomarker in AML, holds potential to guide treatment planning in the clinic, and indicates novel therapeutic directions.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , Humanos , Prognóstico , Estudos Retrospectivos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Perfilação da Expressão Gênica , Proteínas S100/genética , Proteínas S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética
16.
BMC Bioinformatics ; 22(Suppl 10): 613, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012455

RESUMO

BACKGROUND: Glucocorticoid-remediable aldosteronism (GRA) is a form of heritable hypertension caused by a chimeric fusion resulting from unequal crossing over between 11ß-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2), which are two genes with similar sequences. Different crossover patterns of the CYP11B1 and CYP11B2 chimeric genes may be associated with a variety of clinical presentations. It is therefore necessary to develop an efficient approach for identifying the differences between the hybrid genes of a patient with GRA. RESULTS: We developed a long-read analysis pipeline named GRAde (GRA deciphering), which utilizes the nonidentical bases in the CYP11B1 and CYP11B2 genomic sequences to identify and visualize the chimeric form. We sequenced the polymerase chain reaction (PCR) products of the CYP11B1/CYP11B2 chimeric gene from 36 patients with GRA using the Nanopore MinION device and analyzed the sequences using GRAde. Crossover events were identified for 30 out of the 36 samples. The crossover sites appeared in the region exhibiting high sequence similarity between CYP11B1 and CYP11B2, and 53.3% of the cases were identified as having a gene conversion in intron 2. More importantly, there were six cases for whom the PCR products indicated a chimeric gene, but the GRAde results revealed no crossover pattern. The crossover regions were further verified by Sanger sequencing analysis. CONCLUSIONS: PCR-based target enrichment followed by long-read sequencing is an efficient and precise approach to dissecting complex genomic regions, such as those involved in GRA mutations, which could be directly applied to clinical diagnosis. The scripts of GRAde are available at https://github.com/hsu-binfo/GRAde .


Assuntos
Citocromo P-450 CYP11B2 , Hiperaldosteronismo , Esteroide 11-beta-Hidroxilase , Citocromo P-450 CYP11B2/genética , Humanos , Hiperaldosteronismo/genética , Proteínas Mutantes Quiméricas , Mutação , Esteroide 11-beta-Hidroxilase/genética
17.
Br J Haematol ; 196(1): 156-168, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536013

RESUMO

Increasing evidence supports the role of the immune microenvironment and associated signalling in the pathogenesis of myelodysplastic syndromes (MDS). Nevertheless, the clinical relevancy of immune signals in patients with MDS remains elusive. To address this, we used single-sample gene-set enrichment analysis to score immune signatures of bone marrow (BM) samples from 176 patients with primary MDS. Enhanced signatures of 'immature dendritic cells' and 'natural killer cells with cluster of differentiation (CD)56bright' were correlated with better overall survival (OS), whilst higher 'CD103+ signature' was associated with reduced survival. An MDS-Immune-Risk (MIR) scoring system was constructed based on the weighted sums derived from Cox regression analysis. High MIR scores were correlated with higher revised International Prognostic Scoring System (IPSS-R) scores and mutations in ASXL transcriptional regulator 1 (ASXL1), Runt-related transcription factor 1 (RUNX1), and tumour protein p53 (TP53). High-score patients had significantly inferior leukaemia-free survival (LFS) and OS than low-score patients. The prognostic significance of MIR scores for survival remained valid across IPSS-R subgroups and was validated in two independent cohorts. Multivariable analysis revealed that a higher MIR score was an independent adverse risk factor for LFS and OS. We further proposed a model with the combination of MIR score and gene mutations to be complementary to IPSS-R for the prognostication of LFS and OS of patients with MDS.


Assuntos
Biomarcadores , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/mortalidade , Idoso , Biópsia , Medula Óssea/patologia , Células da Medula Óssea/imunologia , Transformação Celular Neoplásica/genética , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico
18.
Mol Cell Proteomics ; 19(11): 1805-1825, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788343

RESUMO

The EGFR tyrosine kinase inhibitor gefitinib is commonly used for lung cancer patients. However, some patients eventually become resistant to gefitinib and develop progressive disease. Here, we indicate that ecto-ATP synthase, which ectopically translocated from mitochondrial inner membrane to plasma membrane, is considered as a potential therapeutic target for drug-resistant cells. Quantitative multi-omics profiling reveals that ecto-ATP synthase inhibitor mediates CK2-dependent phosphorylation of DNA topoisomerase IIα (topo IIα) at serine 1106 and subsequently increases the expression of long noncoding RNA, GAS5. Additionally, we also determine that downstream of GAS5, p53 pathway, is activated by ecto-ATP synthase inhibitor for regulation of programed cell death. Interestingly, GAS5-proteins interactomic profiling elucidates that GAS5 associates with topo IIα and subsequently enhancing the phosphorylation level of topo IIα. Taken together, our findings suggest that ecto-ATP synthase blockade is an effective therapeutic strategy via regulation of CK2/phospho-topo IIα/GAS5 network in gefitinib-resistant lung cancer cells.


Assuntos
Complexos de ATP Sintetase/antagonistas & inibidores , Antineoplásicos/farmacologia , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/metabolismo , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Membrana Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , DNA Topoisomerases Tipo II/metabolismo , Gefitinibe/farmacologia , Ontologia Genética , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteômica , RNA Longo não Codificante/genética , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espectrometria de Massas em Tandem , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Esophagus ; 19(4): 693-701, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35816242

RESUMO

BACKGROUND: Although DNA damage response and repair (DDR) gene alteration has been demonstrated as a biomarker for anti-PD-1 therapy in several cancer types, its role in esophageal squamous cell carcinoma (ESCC) is unknown. METHODS: Patients with advanced ESCC treated with anti-PD-1-based immunotherapy were enrolled. Tumor response was evaluated according to RECIST 1.1. Archival ESCC tissues were analyzed using FoundationOne CDx. Deleterious alterations, defined by loss of function, of DDR genes were correlated with patient survival by Cox proportional hazards model. The prognostic significance of deleterious alterations of DDR genes in The Cancer Genome Atlas (TCGA)-ESCC cohort was explored. RESULTS: Forty-three patients were enrolled. The objective response rate (ORR) was 19%. The median tumor mutational burden was 4 mutations/Mb (0-20); none of the tumors were microsatellite instable. Compared with patients with wild-type or other alterations of DDR genes (N = 35, 81%), those with deleterious alterations of DDR genes (N = 8, 19%) had a higher ORR (38 vs. 14%), longer median progression-free survival (4.1 vs. 2.0 months), and significantly longer median overall survival (OS; 27.7 vs. 6.1 months, P = 0.011). In multivariate analysis, harboring deleterious alterations of DDR genes was a favorable prognostic factor for OS (HR = 0.31 [95% CI: 0.11-0.91], P = 0.033). In the TCGA-ESCC cohort, the presence of deleterious alterations of DDR genes was not a favorable prognostic factor. CONCLUSIONS: Deleterious alterations of DDR genes may be associated with improved prognosis and efficacy of anti-PD-1 therapy in patients with advanced ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais/genética , Dano ao DNA , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Prognóstico
20.
Br J Haematol ; 192(3): 589-598, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249572

RESUMO

Long non-coding RNAs (lncRNAs) have important functions in cancer biology. Among them, lncRNA KIAA0125 is one of the genes proposed to play a critical role in leukaemia stem cell (LSC). In this study, we aimed to investigate the clinical relevance of the expression levels of lncRNA KIAA0125 in myelodysplastic syndromes (MDS), a disease with highly heterogeneous clinical and biological features. Using RNA arrays, we measured the expression of KIAA0125 in 176 primary MDS patients. We found that higher KIAA0125 expression was associated with higher risk MDS, based on the revised International Prognostic Scoring System (IPSS-R), mutations in ASXL1 and NRAS, and predicted poorer overall survival (OS) and leukaemia-free survival (LFS). Multivariate analysis revealed that higher KIAA0125 expression was an independent, unfavourable prognostic factor for OS and LFS, irrespective of IPSS-R and mutation status. Further global gene expression profile analysis suggested a close association of higher KIAA0125 expressions with LSC signatures. The expression of KIAA0125 may be a potential biomarker to guide the treatment choice in MDS patients, especially those with lower risk subtypes, in whom palliative treatment is usually used.


Assuntos
Síndromes Mielodisplásicas/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/diagnóstico , Prognóstico , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA