Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Small ; 20(16): e2306323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38039497

RESUMO

Room temperature phosphorescent (RTP) materials with long-lived, excitation-dependent, and time-dependent phosphorescence are highly desirable but very hard to achieve. Herein, this work reports a rational strategy of multiple wavelength excitation and time-dependent dynamic RTP color by confining silane-functionalized carbon dots (CDs) in a silica matrix (Si-CDs@SiO2). The Si-CDs@SiO2 possesses unique green-light-excitation and a change in phosphorescence color from yellow to green. A slow-decaying phosphorescence at 500 nm with a lifetime of 1.28 s and a fast-decaying phosphorescence at 580 nm with a lifetime of 0.90 s are observed under 365 nm of irradiation, which originated from multiple surface triplet states of the Si-CDs@SiO2. Given the unique dynamic RTP properties, the Si-CDs@SiO2 are demonstrated for applications in fingerprint recognition and multidimensional dynamic information encryption. These findings will open an avenue to explore dynamic phosphorescent materials and significantly broaden their applications.

2.
J Sci Food Agric ; 104(2): 572-582, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37650308

RESUMO

Pumpkin seed oil (PSO), a rich source of nutrients, is extracted from the seeds of different pumpkin varieties for food and medicines. This article aims to provide an evidence-based review of the literature and to explore the extraction technologies, nutritional properties, and biological activity of PSO. From previous literature, PSO contains a large proportion of unsaturated fatty acids, with linoleic acid as the main component, and an amount of tocopherol, phytosterol, and phenolic acids. Some differences in the yield, composition, and physicochemical properties of PSO can be associated with the pumpkin's cultivars and the extraction methods. Some novel technologies involved in supercritical fluid extraction, enzyme-assisted aqueous extraction, and ultrasound-assisted extraction have been replacing the conventional technologies gradually as promising methods for the safe, non-polluting, and effective recovery of PSO. This healthy vegetable oil was reported by several in vitro and in vivo studies to have potential protective roles in oxidative stress, inflammation, cancer, and cardiovascular diseases. © 2023 Society of Chemical Industry.


Assuntos
Cucurbita , Cucurbita/química , Ácidos Graxos/química , Tocoferóis/análise , Antioxidantes/química , Sementes/química , Óleos de Plantas/química
3.
Nano Lett ; 22(13): 5127-5136, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35700100

RESUMO

Carbon dots (CDs) have aroused widespread interest in the construction of room-temperature phosphorescent (RTP) materials. However, it is a great challenge to obtain simultaneous multicolor long-wavelength RTP emission and excellent stability in CD-based RTP materials. Herein, a novel and universal "CDs-in-YOHF" strategy is proposed to generate multicolor and long-wavelength RTP by confining various CDs in the Y(OH)xF3-x (YOHF) matrix. The mechanism of the triplet emission of CDs is related to the space confinement, the formation of hydrogen bonds and C-F bonds, and the electron-withdrawing fluorine atoms. Remarkably, the RTP lifetime of orange-emissive CDs-o@YOHF is the longest among the reported single-CD-matrix composites for emission above 570 nm. Furthermore, CDs-o@YOHF exhibited higher RTP performance at long wavelength in comparison to CDs-o@matrix (matrix = PVA, PU, urea, silica). The resulting CDs@YOHF shows excellent photostability, thermostability, chemical stability, and temporal stability, which is rather favorable for information security, especially in a complex environment.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Corantes Fluorescentes/química , Fluoretos , Pontos Quânticos/química , Temperatura
4.
Angew Chem Int Ed Engl ; 60(41): 22253-22259, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34390105

RESUMO

Room-temperature afterglow (RTA) materials with long lifetime have shown tremendous application prospects in many fields. However, there is no general design strategy to construct near-infrared (NIR)-excited multicolor RTA materials. Herein, we report a universal approach based on the efficient radiative energy transfer that supports the reabsorption from upconversion materials (UMs) to carbon dots-based RTA materials (CDAMs). Thus, the afterglow emission (blue, cyan, green, and orange) of various CDAMs can be activated by UMs under the NIR continuous-wave laser excitation. The efficient radiative energy transfer ensured the persistent multicolor afterglow up to 7 s, 6 s, 5 s, and 0.5 s by naked eyes, respectively. Given the unusual afterglow properties, we demonstrated preliminary applications in fingerprint recognition and information security. This work provides a new avenue for the activation of NIR-excited afterglow in CDAMs and will greatly expand the applications of RTA materials.

5.
Small ; 16(49): e2005228, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33185338

RESUMO

Carbon nanodots (CDs) anchored onto inorganic supporter (amorphous nanosilica, SiO2 ) like a core-satellite structure have enhanced the room-temperature phosphorescence (RTP) intensity along with ultralong lifetime of 1.76 s. Special and quite stable structure should account for these superiorities, including hydrogen network, covalent bond, and trap-stabilized triplet-state excitons that are responsible for the generation of phosphorescence. These multiple effects have efficaciously protected CDs from being restrained by the external environment, providing such long-lived emission (LLE) that can subsist not only in powdery CDs-SiO2 but also coexist in aqueous solution, pushing a big step forward in the application prospects of liquid-state phosphorescence. Through construction of CDs-SiO2 compound, electron trap is reasoned between CDs and SiO2 by analyzing thermoluminescent glow curve. Electron trap can capture, store, and gradually release the electrons just like an electron transporter to improve the intersystem crossing (ISC) and reserved ISC, having provided the more stabilized triplet excitons, stronger and longer phosphorescence, and also triggered the formation of thermally activated delayed fluorescence (TADF), offering a new mechanism for exploiting LLE among CD-based field. Moreover, it is more beneficial to the formation of TADF as temperature increases, thus the afterglow color can change with the temperature.

6.
Small ; 16(1): e1905266, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782905

RESUMO

Commercial white light-emitting diodes (LEDs) have the undesirable characteristics of blue-rich emission and low color rendering index (CRI), while the constituent quantum dots (QDs) suffer from aggregation-induced fluorescence quenching and poor stability. Herein, a strategy is developed to assemble tricolor QDs into a polysiloxane matrix using a polymer-mediated hybrid approach whereby the hybrid composite exhibits a significant enhancement of aggregation-dispersed emission, outstanding photostability, high thermal stability, and outstanding fluorescence recovery. Using the as-prepared hybrid fluorescent materials, the fabricated LEDs exhibit solar spectrum-simulated emission with adjustable Commission Internationale de L'Eclairage coordinates, correlated color temperature, and a recorded CRI of 97. Furthermore, they present no ultraviolet emission and weak blue emission, thus indicating an ideal healthy and high-CRI white LED lighting source.

7.
Opt Express ; 28(13): 19550-19561, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672229

RESUMO

C-dot-based composites with phosphorescence have been widely reported due to their attractive potential in various applications. But easy quenching of phosphorescence induced by oxygen or instability of matrices remained a tricky problem. Herein, we reported a Si-doped-CD (Si-CD)-based RTP materials with long lifetime by embedding Si-CDs in sulfate crystalline matrices. The resultant Si-CD@sulfate composites exhibited a long lifetime up to 1.07 s, and outstanding stability under various ambient conditions. The intriguing RTP phenomenon was attributed to the C = O bond and the doping of Si element due to the fact that sulfates could effectively stabilize the triplet states of Si-CDs, thus enabling the intersystem crossing (ISC). Meanwhile, we confirmed that the ISC process and phosphorescence emission could be effectively regulated based on the heavy atom effect. This research introduced a new perspective to develop materials with regulated RTP performance and high stability.

8.
Opt Express ; 27(5): 7629-7641, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876325

RESUMO

The research and development of non-toxic, broad-spectrum and environmentally friendly ultraviolet absorbers remains no significant progress in recent years. We found that the ultraviolet absorption spectra can be regulated through modification of functional groups on carbon dots surface, and the modified carbon dots exhibiting good stability and functions of sunscreen (Sun protection actor reaches to 22) and anti-aging properties were experimentally demonstrated. Moreover, we figured out the ultraviolet absorption mechanism of carbon dots for the first time and confirmed the existence of non-fluorescent radiation energy traps. Carbon dots are expected to be widely used and commercialized as ultraviolet absorbers.

9.
Nanotechnology ; 30(15): 155601, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30625454

RESUMO

The shell/core structure of CDs@CaF2 nanocomposites (CCNCs) were prepared by assembling fluorescent carbon dots (CDs) inside the inorganic CaF2 substrates using co-precipitation interaction. CDs endow CaF2 with properties of good UV-absorbing behavior and efficient blue light emission instead of rare-earth such as Eu that is expensive and susceptible to polluting the environment during the mining process. Due to the nanometer size and surface effect of nano CaF2, and the approximate refractive index between CaF2 and polyethylene (PE), CCNC/PE film exhibits better elongation at the break than pure PE film while maintaining high transparency and visible light transmittance. Simultaneously, the CCNC/PE film was experimentally demonstrated to have outstanding performance of anti-UV and blue light conversion, which shows that CCNCs can be a novel and promising multifunctional additive applied in polymers especially for greenhouse film.

10.
Angew Chem Int Ed Engl ; 58(22): 7278-7283, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-30924580

RESUMO

Carbon dots (CDs) have attracted attention in metal-free afterglow materials, but most CDs were heteroatom-containing and the afterglow emissions are still limited to the short-wavelength region. A universal approach to activate the room-temperature phosphorescence (RTP) of both heteroatom-free and heteroatom-containing CDs was developed by one-step heat treatment of CDs and boric acid (BA). The introduction of an electron-withdrawing boron atom in composites can greatly reduce the energy gap between the singlet and triplet state; the formed glassy state can effectively protect the excited triplet states of CDs from nonradiative deactivation. A universal host for embedding CDs to achieve long-lifetime and multi-color (blue, green, green-yellow and orange) RTP via a low cost, quick and facile process was developed. Based on their distinctive RTP performances, the applications of these CD-based RTP materials in information encryption and decryption are also proposed and demonstrated.

11.
Small Methods ; 8(1): e2301013, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37891712

RESUMO

Carbon dots (CDs), as emerging long afterglow luminescent material, have attracted the attention of researchers and become one of the hot topics in long afterglow materials. In recent years, researchers have obtained a series of CDs-based long afterglow materials with different properties utilizing matrix-assisted and self-protective methods. To meet diverse application needs, the development of multicolor CDs-based long afterglow materials is a focus and challenge in this field. Most of the previously reported CDs-based long afterglow materials generally emit blue or green afterglow. Recently, some multicolor systems have been discovered, and the emission range can extend from ultraviolet to near-infrared. However, there is a lack of systematic and in-depth analysis regarding the preparation strategy and luminescence mechanism of multicolor afterglow from CDs-based long afterglow materials. Based on this, this review summarizes the preparation strategies of multicolor afterglow from raw materials and reaction parameters. Then, the luminescence mechanisms of multicolor afterglow are analyzed from seven factors, including carbonization degree, surface state, aggregation degree, temperature dependence, excitation dependence, multi-emission center, and energy transfer. Moreover, the applications of multicolor afterglow from CDs-based long afterglow materials are introduced. Finally, the problems and challenges in this field are discussed, and the future development directions are analyzed.

12.
Mater Horiz ; 11(1): 113-133, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856234

RESUMO

Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.

13.
Food Chem X ; 22: 101422, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756474

RESUMO

Carbon dots (CDs) with different structures were prepared by electrolysis (PE-CDs) and hydrothermal (PH-CDs) methods using proanthocyanidins as precursors. The smaller size and lower zeta potential enabled the PE-CDs treated rice seedlings to exhibit greater resistance to salt stress. The fresh weight of rice seedlings under salt stress was significantly increased by spraying CDs every other day for two weeks. PE-CDs treated group exhibited a faster electron transport rate, and the SOD activity and flavonoid content were 2.5-fold and 0.23-fold higher than those of the salt stress-treated group. Furthermore, the metabolomics and transcriptomics analysis revealed that the PsaC gene of photosystem I was significantly up-regulated under PE-CDs treatment, which accelerated electron transfer in photosystem I. The up-regulation of BX1 and IGL genes encoding indole synthesis allowed rice to enhance stress tolerance through tryptophan and benzoxazine biosynthesis pathways. These findings offer help in purposefully synthesizing CDs and boosting food production.

14.
J Mater Chem B ; 12(24): 5974-5981, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38809058

RESUMO

Rapid and sensitive detection of food-borne bacteria has remained challenging over the past few decades. We propose a surface-enhanced Raman scattering sensing strategy based on a novel bioinspired surface-enhanced Raman scattering substrate, which can directly detect dye molecular residues and food-borne pathogen microorganisms in the environment. The surface-enhanced Raman scattering platform consists of a natural diatomite microporous array decorated with a metal-phenolic network that enables the in situ reduction of gold nanoparticles. The as-prepared nanocomposites display excellent surface-enhanced Raman scattering activity with the lowest limit of detection and the maximum Raman enhancement factor of dye molecules up to 10-11 M and 1.18 × 107, respectively. For food-borne bacterial detection, a diatomite microporous array decorated with a metal polyphenol network and gold nanoparticle-based surface-enhanced Raman scattering analysis is capable of distinguishing the biochemical fingerprint information of Staphylococcus aureus and Escherichia coli, indicating the great potential for strain identification.


Assuntos
Terra de Diatomáceas , Escherichia coli , Ouro , Análise Espectral Raman , Staphylococcus aureus , Análise Espectral Raman/métodos , Staphylococcus aureus/isolamento & purificação , Terra de Diatomáceas/química , Escherichia coli/isolamento & purificação , Ouro/química , Nanopartículas Metálicas/química , Microbiologia de Alimentos , Propriedades de Superfície , Tamanho da Partícula
15.
JACS Au ; 3(8): 2291-2298, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37654575

RESUMO

Carbon dot (CD)-based luminescent materials have attracted great attention in optical anti-counterfeiting due to their excellent photophysical properties in response to ultraviolet-to-visible excitation. Hence, there is an urgent need for the general synthesis of CD-based materials with multimode luminescence properties and high stability; however, their synthesis remains a formidable challenge. Herein, CDs were incorporated into a Yb,Tm-doped YF3 matrix to prepare CDs@YF3:Yb,Tm composites. The YF3 plays a dual role, not only serving as a host for fixing rare earth luminescent centers but also functioning as a rigid matrix to stabilize the triplet state of the CDs. Under the excitation of 365 nm ultraviolet light and 980 nm near-infrared light, CDs@YF3:Yb,Tm exhibited blue fluorescence and green room-temperature phosphorescence of CDs and upconversion luminescence of Tm3+, respectively. Due to the strong protection of the rigid matrix, the stability of CDs@YF3:Yb,Tm is greatly improved. This work provides a general synthesis strategy for achieving multimode luminescence and high stability of CD-based luminescent materials and offers opportunities for their applications in advanced anti-counterfeiting and information encryption.

16.
ACS Nano ; 17(21): 21195-21205, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862085

RESUMO

Teeth staining is a common dental health challenge in many parts of the world. Traditional teeth whitening techniques often lead to enamel damage and soft tissue toxicity due to the use of bioincompatible whitening reagents and continuous strong light irradiation. Herein, an "afterglow" photodynamic therapy (aPDT) for teeth whitening is proposed, which is realized by energy transition pathways of intersystem crossing. The covalent and hydrogen bonds formed by carbon dots embedded in silica nanoparticles (CDs@SiO2) facilitate the passage of energy through intersystem crossing (ISC), thereby extending the half-life of reactive oxygen species (ROS). The degradation efficiency of aPDT on dyes was higher than 95% in all cases. It can thoroughly whiten teeth by eliminating stains deep in the enamel without damaging the enamel structure and causing any tissue toxicity. This study illustrates the superiority of aPDT for dental whitening and the approach to exploring carbon-dots-based nanostructures in the treatment of oral diseases.


Assuntos
Nanopartículas , Fotoquimioterapia , Clareamento Dental , Clareamento Dental/métodos , Dióxido de Silício , Carbono , Fotoquimioterapia/métodos
17.
Anal Chem ; 84(23): 10338-44, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23092505

RESUMO

Hybridization of metal nanoparticles with graphene oxide for high performance surface-enhanced Raman scattering (SERS) has attracted overwhelming attention in recent years. Herein, a one-pot green route for intracellular synthesis of gold nanostructures assisted by poly(vinylpyrrolidone) (PVP)-functionalized graphene oxide (GO) was proposed. The hybrids obtained [GO/PVP/intracellularly grown gold nanoparticles (IGAuNs)] randomly scattered throughout the cell. Compared with the IGAuNs, the growth of GO/PVP/IGAuNs was remarkably accelerated, which could be attributed to the coordination of PVP enriched on GO. GO/PVP/IGAuNs could serve as excellent SERS probes for ultrasensitive detection of cellular components of cancer cells located in the cytoplasm, nucleoplasm, and nucleolus. The random intracellular distribution of GO/PVP/IGAuNs facilitated the effective Raman characterization of cellular components, which was confirmed by the uniform distribution of SERS signals in the Raman image. The SERS signals induced by GO/PVP/IGAuNs could be collected as early as 15 h, which allowed rapid detection of tumor cells. In conclusion, this facile and green strategy for fast intracellular growth of GO/PVP/IGAuNs offered great potential for biomedical applications.


Assuntos
Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Óxidos/química , Adenocarcinoma/patologia , Animais , Feminino , Células HeLa , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Mamárias Animais/patologia , Camundongos , Análise Espectral Raman , Células Tumorais Cultivadas
18.
ACS Appl Mater Interfaces ; 14(26): 30029-30038, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737890

RESUMO

All-inorganic CsPbBr3 perovskite quantum dots (QDs) are considered to be one of the most promising green candidates for the new-generation backlight displays. The pending barriers to their applications, however, lie in their mismatching of the target window of green light, scalable production, susceptibility to the leaching of lead ions, and instability in harsh environments (such as moisture, light, and heat). Herein, high-quality CsPbBr3 QDs with globoid shapes and cuboid shapes were in situ crystallized/grown inside a well-designed glass to produce nanocomposites with peak emission at 526 nm, which not only exhibited photoluminescence quantum yields of 53 and 86% upon 455 and 365 nm excitation, respectively, but also have been imparted of high stability when they were submerged in water and exposed to heat and light. These characteristics, along with their lead self-sequestration capability and easy-to-scale preparation, can enable breakthrough applications for CsPbBr3 QDs in the field of wide color gamut backlit display. A high-performance backlight white LEDs was fabricated using the CsPbBr3 QDs@glass powder and K2SiF6:Mn4+ red phosphor, which shows a color gamut of ∼126% of the NTSC or 94% of the Rec. 2020 standards.

19.
Adv Healthc Mater ; 11(6): e2101448, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34937144

RESUMO

Carbon dots (CDs) are considered as promising candidates with superior biocompatibilities for multimodel cancer theranostics. However, incorporation of exogenous components, such as targeting molecules and chemo/photo therapeutic drugs, is often required to improve the therapeutic efficacy. Herein, an "all-in-one" CDs that exhibit intrinsic bioactivities for bioimaging, potent tumor therapy, and postoperative management is proposed. The multifunctional CDs derived from gallic acid and tyrosine (GT-CDs) consist of a graphitized carbon core and N, O-rich functional groups, which endow them with a high near-infrared (NIR) photothermal conversion efficiency of 33.9% and tumor-specific cytotoxicity, respectively. A new imaging modality, photothermal optical coherence tomography, is introduced using GT-CDs as the contrast agent, offering the micrometer-scale resolution 3D tissue morphology of tumor. For cancer therapy, GT-CDs initiate the intracellular generation of reactive oxygen species in tumor cells but not normal cells, further induce the mitochondrial collapse and subsequent tumor cellular apoptosis. Combined with NIR photothermal treatment, synergistic antitumor therapy is achieved in vitro and in vivo. GT-CDs also promote the healing process of bacteria-contaminated skin wound, demonstrating their potential to prevent postoperative infection. The integrated theranostic strategy based on versatile GT-CDs supplies an alternative easy-to-handle pattern for disease management.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Carbono/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Nanomedicina Teranóstica , Tomografia de Coerência Óptica
20.
ACS Nano ; 16(11): 18027-18037, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36342325

RESUMO

Nanotechnology is considered as an emerging effective means to augment plant photosynthesis. However, there is still a lot of work to be done in this field. Here, we applied the upconversion nanoparticles (UCNPs) on lettuce leaves and found that the UCNPs were able to transport into the lettuce body and colocalize with the chloroplasts. It was proved that UCNPs could harvest the near-infrared light of sunlight and increase the electron transfer rate in the photosynthesis process, thus increasing the photosynthesis rate. The gene expression analysis showed that more than 90% of gene expression in photosynthesis was upregulated. After spraying the UCNP solution on the leaves of lettuce and placing the lettuce under sunlight for 1 week, the wet/dry weight of the leaves increased by 53.33% and 45.71%, respectively. This nanoengineering of light-harvesting UCNPs may have great potential for applications in agriculture.


Assuntos
Nanopartículas , Raios Infravermelhos , Nanotecnologia , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA