Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nitric Oxide ; 142: 47-57, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049061

RESUMO

BACKGROUND: Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS: We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS: These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS: H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.


Assuntos
Aterosclerose , Sulfeto de Hidrogênio , Camundongos , Animais , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Transição Endotélio-Mesênquima , Aterosclerose/genética , Aterosclerose/metabolismo , Endotélio/metabolismo , DNA/metabolismo , Apolipoproteínas E/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transição Epitelial-Mesenquimal
2.
Cytokine ; 146: 155557, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303273

RESUMO

AIM: Atrial fibrillation (AF) is a common clinical arrhythmia and can cause a variety of complications. To study the therapeutic effect of H2S in atrial fibrosis and explore the important role of miR-133a, in vitro experiments in human atrial fibroblasts (HAFs) were conducted. METHODS: The fibrosis in HAFs was induced by Ang II. The expression levels of miR-133a and CTGF in HAFs were examined by qRT-PCR. The proliferation and migration of HAFs were detected by CCK-8 and cell scratch assays. The protein expressions of CTGF, collagen I, collagen III and α-SMA were detected by western blotting. The dual-luciferase reporter gene was used to detect the interaction between miR-133a and CTGF. RESULTS: The proliferation and migration of HAFs stimulated by Ang II were enhanced, the expression of miR-133a was reduced, and the levels of CTGF and fibrosis markers (collagen I, collagen III and α-SMA) were increased. Furthermore, H2S reduced fibrosis, proliferation and migration of HAFs induced by Ang II. Accordingly, overexpression of miR-133a inhibited the proliferation and migration ability on Ang II-induced HAFs, and decreased the protein expressions of related fibrosis markers and CTGF. Meanwhile, miR-133a inhibitor could reverse the inhibition effect of H2S on proliferation and migration in HAFs by Ang II-induced. By targeting CTGF, miR-133a inhibited the expression of CTGF. CONCLUSION: H2S improved myocardial cell fibrosis by significantly increasing the expression of miR-133a, and CTGF might be a potential target for miR-133a to play an important role in myocardial fibrosis.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Átrios do Coração/patologia , Sulfeto de Hidrogênio/uso terapêutico , MicroRNAs/metabolismo , Angiotensina II , Sequência de Bases , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Sulfeto de Hidrogênio/farmacologia , MicroRNAs/genética
3.
Biochem Biophys Res Commun ; 516(3): 653-660, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31242971

RESUMO

Atrial fibrillation (AF) is associated with metabolic stress and induces myocardial fibrosis reconstruction by increasing glycolysis. One goal in the treatment of paroxysmal AF (p-AF) is to improve myocardial fibrosis reconstruction and myocardial metabolic stress caused by the Warburg effect. Adopted male canine that rapid right atrial pacing (RAP) for 6 days to establish a p-AF model. The canines were pre-treated with phenylephrine (PE) or dichloroacetic acid (DCA) before exposure to p-AF or non-p-AF. P-wave duration (Pmax), minimum P-wave duration (Pmin), P wave dispersion (PWD), atrial effective refractory period (AERP) and AERP dispersion (AERPd) were measured in canine atrial cardiomyocytes. Pyruvate dehydrogenase kinase-1 (PDK-1), PDK-4, lactate dehydrogenase A (LDHA), pyruvate dehydrogenase (PDH), citrate synthase (CS), isocitrate dehydrogenase (IDH), and matrix metalloproteinase 9 (MMP-9) were evaluated by western blotting and reverse transcription polymerase chain reaction (RT-PCR), content of adenosine monophosphate (AMP), adenosine triphosphate (ATP), lactic acid and glycogen, and activity of LDHA, PDK-1 and PDK-4 were evaluated by enzyme-linked immunosorbent assay (ELISA), myocardial tissue glycogen content was evaluated by PAS, myocardial fibrosis remodeling was evaluated by hematoxylin and eosin (H&E) and Masson staining. Our findings demonstrated that p-AF increases the Warburg effect-related metabolic stress and myocardial fibrosis remodeling by increasing the expression and activity of PDK-1, PDK-4, and LDHA, content of AMP and lactic acid, and the ratio of AMP/ATP and decreasing the expression of PDH, CS, and IDH, and glycogen content. In addition, p-AF can induce cardiomyocyte fibrosis remodeling and increase MMP-9 expression, and p-AF also increases atrial intracardiac waveform activity by prolonging Pmax, Pmin, PWD, and AERPd and shortening AERP. PDK isoforms agonists (PE) produce a similar p-AF pathological effect and can produce synergistic effects with p-AF, further increasing Warburg effect-related metabolic stress, myocardial fibrosis remodeling, and atrial intracardiac waveform activity. In contrast, the use of PDK-specific inhibitors (DCA) completely reverses these pathophysiological changes induced by p-AF. We demonstrate that p-AF can induce the Warburg effect in canine atrial cardiomyocytes and significantly improve p-AF-induced metabolic stress, myocardial fibrosis remodeling, and atrial intracardiac waveform activity by inhibiting the Warburg effect.


Assuntos
Fibrilação Atrial/metabolismo , Glicólise/fisiologia , Sistema de Condução Cardíaco/metabolismo , Miocárdio/metabolismo , Estresse Fisiológico/fisiologia , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Estimulação Cardíaca Artificial , Ácido Dicloroacético/farmacologia , Cães , Fibrose , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicogênio/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Lactato Desidrogenase 5/genética , Lactato Desidrogenase 5/metabolismo , Masculino , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
4.
Mol Cell Biochem ; 414(1-2): 57-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26899709

RESUMO

Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.


Assuntos
Apoptose/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/fisiologia , Proteína Forkhead Box O3/metabolismo , Peróxido de Hidrogênio/toxicidade , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular , Fosforilação , Transporte Proteico , Ratos
5.
Cell Mol Neurobiol ; 35(4): 513-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25471227

RESUMO

Diabetes is known to be associated with neurodegenerative diseases. Resveratrol, a plant-derived polyphenolic compound found in red wine, possesses antioxidant properties. In this study, we aimed to investigate the effects of resveratrol on the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)/FoxO3a pathway in mediating high glucose (HG)-induced injuries in neuronal PC12 cells. PC12 cells were exposed to HG to establish a model of HG neurotoxicity. Results showed that pre-treating PC12 cells with resveratrol before exposure to HG led to increased cell viability, decreased apoptotic cells, and reactive oxygen species generation. Western blot analysis showed that HG decreased the phosphorylation of Akt and FoxO3a and led to the nuclear localization of FoxO3a. These effects were significantly alleviated by resveratrol co-treatment. Furthermore, the protective effects of resveratrol were abolished by PI3K/Akt inhibitor LY294002. All these results demonstrate that resveratrol protected the PC12 cells from HG-induced oxidative stress and apoptosis via the activation of PI3K/Akt/FoxO3a signaling pathway.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Glucose/toxicidade , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estilbenos/farmacologia , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Cromonas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteína Forkhead Box O3 , Proteínas de Membrana/metabolismo , Morfolinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos
6.
Zhonghua Xin Xue Guan Bing Za Zhi ; 43(2): 141-5, 2015 Feb.
Artigo em Zh | MEDLINE | ID: mdl-25907486

RESUMO

OBJECTIVE: To explore effects and potential mechanisms of high insulin environment on high density lipoprotein (HDL) generation-related functional protein ABCA1. METHODS: [(3)H] labeled cholesterol efflux from mature 3T3-L1 adipocytes was detected by liquid scintillation counting. ABCA1 mRNA and protein expression in mature 3T3-L1 adipocytes post stimulation with various concentrations of insulin was detected by real-time fluorescence-based quantitative techniques and Western blot, respectively, in the absence and presence of CHX (cycloheximide, CHX), calpeptin (calpain pathway inhibitor) or MG-132 (proteasome pathway inhibitor). RESULTS: Cholesterol efflux rates were reduced post insulin stimulation in a dose-dependent manner ((7.06 ± 0.27)%, (6.59 ± 0.30)%, (6.34 ± 0.24)%, (5.07 ± 0.40)%, and (4.71 ± 0.40)% at 0, 1, 10, 10², and 10³ nmol/L of insulin, P < 0.05). Cholesterol efflux rates decreased in a time-dependent manner post 10³ nmol/L insulin stimulation (6.52 ± 0.30)%, (5.59 ± 0.71)%, (5.44 ± 0.37)%, (4.52 ± 0.32)%, and (4.38 ± 0.33)% at 0, 2, 4, 6, 12 h, respectively). ABCA1mRNA levels were not affected by insulin (P > 0.05). ABCA1 protein level was significantly downregulated in 10³ nmol/L insulin group compared to 0 nmol/L insulin group (P < 0.01). Compared with the 0 h group, ABCA1 protein level was significantly reduced in 6 h group (P < 0.05) and further reduced in 12 h group (P < 0.01). Both calpeptin and MG-132 could partly reduce insulin-induced degradation of ABCA1. Compared with the negative control group, ABCA1 protein levels were significantly upregulated by cotreatment with calpeptin and MG-132, respectively (both P < 0.01). CONCLUSION: Our data suggest that high insulin level could promote the ABCA1 protein degradation and reduce cholesterol efflux from mature 3T3-L1 adipocytes through calpain and proteasome pathway, thus, produce a circumference not suitable for nascent HDL formation in 3T3-L1 adipocytes.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Lipoproteínas HDL , Células 3T3-L1 , Adipócitos , Animais , Calpaína , Insulina , Leupeptinas , Camundongos , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro
7.
Korean Circ J ; 54(4): 172-186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38654563

RESUMO

BACKGROUND AND OBJECTIVES: Long-term pathological myocardial hypertrophy (MH) seriously affects the normal function of the heart. Dronedarone was reported to attenuate left ventricular hypertrophy of mice. However, the molecular regulatory mechanism of dronedarone in MH is unclear. METHODS: Angiotensin II (Ang II) was used to induce cell hypertrophy of H9C2 cells. Transverse aortic constriction (TAC) surgery was performed to establish a rat model of MH. Cell size was evaluated using crystal violet staining and rhodamine phalloidin staining. Reverse transcription quantitative polymerase chain reaction and western blot were performed to detect the mRNA and protein expressions of genes. JASPAR and luciferase activity were conducted to predict and validate interaction between forkhead box O3 (FOXO3) and protein kinase inhibitor alpha (PKIA) promoter. RESULTS: Ang II treatment induced cell hypertrophy and inhibited sirtuin 1 (SIRT1) expression, which were reversed by dronedarone. SIRT1 overexpression or PKIA overexpression enhanced dronedarone-mediated suppression of cell hypertrophy in Ang II-induced H9C2 cells. Mechanistically, SIRT1 elevated FOXO3 expression through SIRT1-mediated deacetylation of FOXO3 and FOXO3 upregulated PKIA expression through interacting with PKIA promoter. Moreover, SIRT1 silencing compromised dronedarone-mediated suppression of cell hypertrophy, while PKIA upregulation abolished the influences of SIRT1 silencing. More importantly, dronedarone improved TAC surgery-induced MH and impairment of cardiac function of rats via affecting SIRT1/FOXO3/PKIA axis. CONCLUSIONS: Dronedarone alleviated MH through mediating SIRT1/FOXO3/PKIA axis, which provide more evidences for dronedarone against MH.

8.
Eur J Pharmacol ; 982: 176900, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39168432

RESUMO

Atrial fibrosis is associated with the occurrence of atrial fibrillation (AF) and regulated by the transforming growth factor-ß1 (TGF-ß1)/Smad2/3 signalling pathway. Unfortunately, the mechanisms of regulation of TGF-ß1/Smad2/3-induced atrial fibrosis and vulnerability to AF remain still unknown. Previous studies have shown that sirtuin3 (SIRT3) sulfhydration has strong anti-fibrotic effects. We hypothesised that SIRT3 sulfhydration inhibits angiotensin II (Ang-II)-induced atrial fibrosis via blocking the TGF-ß1/Smad2/3 signalling pathway. In this study, we found that SIRT3 expression was decreased in the left atrium of patients with AF compared to that in those with sinus rhythm (SR). In vitro, SIRT3 knockdown by small interfering RNA significantly expanded Ang-II-induced atrial fibrosis and TGF-ß1/Smad2/3 signalling pathway activation, whereas supplementation with Sodium Hydrosulfide (NaHS, exogenous hydrogen sulfide donor and sulfhydration agonist) and SIRT3 overexpression using adenovirus ameliorated Ang-II-induced atrial fibrosis. Moreover, we observed suppression of the TGF-ß1/Smad2/3 pathway when Ang-II was combined with NaHS treatment, and the effect of this co-treatment was consistent with that of Ang-II combined with LY3200882 (Smad pathway inhibitor) on reducing atrial fibroblast proliferation and cell migration in vitro. Supplementation with dithiothreitol (DTT, a sulfhydration inhibitor) and adenovirus SIRT3 shRNA blocked the ameliorating effect of NaHS and AngII co-treatment on atrial fibrosis in vitro. Finally, continued treatment with NaHS in rats ameliorated atrial fibrosis and remodelling, and further improved AF vulnerability induced by Ang-II, which was reversed by DTT and adenovirus SIRT3 shRNA, suggesting that SIRT3 sulfhydration might be a potential therapeutic target in atrial fibrosis and AF.


Assuntos
Angiotensina II , Fibrilação Atrial , Fibrose , Átrios do Coração , Sulfeto de Hidrogênio , Transdução de Sinais , Sirtuína 3 , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Angiotensina II/farmacologia , Sirtuína 3/metabolismo , Sirtuína 3/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/prevenção & controle , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Animais , Proteína Smad2/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Masculino , Humanos , Ratos , Ratos Sprague-Dawley , Feminino , Pessoa de Meia-Idade , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
9.
Am J Hypertens ; 37(9): 726-733, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38761040

RESUMO

BACKGROUND: Hypertension is a risk factor for atrial fibrillation (AF), and brain and muscle arnt-like protein 1 (Bmal1) regulate circadian blood pressure and is implicated in several fibrotic disorders. Our hypothesis that Bmal1 inhibits atrial fibrosis and susceptibility to AF in salt-sensitive hypertension (SSHT) and our study provides a new target for the pathogenesis of AF induced by hypertension. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). An experimental model was used to measure systolic blood pressure (SBP), left atrial ejection fraction (LAEF), left atrial end-volume index (LAEVI), left atrial index (LAFI), AF inducibility, AF duration, and atrial fibrosis pathological examination and the expression of Baml1 and fibrosis-related proteins (TNF-α and α-SMA) in left atrial tissue. RESULTS: DSH increased TNF-α and α-SMA expression in atrial tissue, level of SBP and LAESVI, atrial fibrosis, AF induction rate, and AF duration, and decreased Bmal1 expression in atrial tissue, the circadian rhythm of hypertension, and level of LAEF and LAFI. Our results also showed that the degree of atrial fibrosis was negatively correlated with Bmal1 expression, but positively correlated with the expression of TNF-α and α-SMA. CONCLUSIONS: We demonstrated that a high-salt diet leads to circadian changes in hypertension due to a reduction of Bmal1 expression, which plays a crucial role in atrial fibrosis and increased susceptibility to AF in SSHT rats.


Assuntos
Fatores de Transcrição ARNTL , Fibrilação Atrial , Pressão Sanguínea , Modelos Animais de Doenças , Fibrose , Átrios do Coração , Hipertensão , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/etiologia , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/fisiopatologia , Masculino , Cloreto de Sódio na Dieta/efeitos adversos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Átrios do Coração/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Remodelamento Atrial/efeitos dos fármacos
10.
Am J Hypertens ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023012

RESUMO

BACKGROUND: Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3) / AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either high-salt diet (8% NaCl; DSH group) or normal diet (0.3% NaCl; DSN group). Then DSH group were administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of SBP, the expression levels of lipid metabolism-related biomarker, pathological examination of atrial fibrosis and lipid accumulation, as well as AF inducibility and AF duration. RESULTS: DSH decrease SIRT3, phosphorylation-AMPK and VLCAD expression, increased FASN and FABP4 expression and concentrations of FFA and TG, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4. CONCLUSIONS: We have confirmed that high-salt diet can result in hypertension, associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.

11.
Atherosclerosis ; 390: 117430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301602

RESUMO

BACKGROUND AND AIMS: Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS: Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS: TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.


Assuntos
Aterosclerose , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Becaplermina/genética , Becaplermina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Liso Vascular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular , Transdução de Sinais , Proliferação de Células , Serina-Treonina Quinases TOR/metabolismo , Aterosclerose/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Células Cultivadas , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética
12.
Reprod Sci ; 30(4): 1033-1048, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35941510

RESUMO

The aim of this study is to evaluate the efficacy and safety of coenzyme Q10 supplementation in the treatment of polycystic ovary syndrome (PCOS). We first searched PubMed, Wanfang Data, CNKI, Embase, ClinicalTrial.gov, and other databases. The retrieval time from the establishment of the database to January 2021. We collected relevant randomized controlled trials (RCTs) about coenzyme Q10 in the treatment of PCOS. Risk of bias assessment and meta-analysis of RCTs were performed using RevMan 5.0 software. This systematic review and meta-analysis include a total of 9 RCTs involving 1021 patients. The results show that the addition of coenzyme Q10 may improve insulin resistance (HOMA-IR (WMD - 0.67 [- 0.87, - 0.48], P < 0.00001); fasting insulin (WMD - 1.75 [- 2.65, - 0.84], P = 0.0002); fasting plasma glucose (WMD - 5.20 [- 8.86, - 1.54], P = 0.005)), improve sex hormone levels (FSH (SMD - 0.45 [0.11, 0.78], P = 0.009); testosterone (SMD - 0.28 [- 0.49, - 0.06], P = 0.01)), and improve blood lipids (triglycerides (SMD - 0.49 [- 0.89, - 0.09], P = 0.02); total cholesterol (SMD - 0.35 [- 0.56, - 0.14], P = 0.001); LDL-C (SMD - 0.22 [- 0.43, - 0.01], P = 0.04); HDL-C (SMD 0.22 [0.01, 0.43], P = 0.04)). Only one RCT reported adverse events, and they found that patients had no adverse effects or symptoms following supplementation. Based on the current evidence, it could be considered that the addition of CoQ10 is a safe therapy to improve PCOS by improving insulin resistance (reduce HOMA-IR, FINS, FPG), increasing sex hormone levels (increase FSH, reduce testosterone), and improving blood lipids (reduce TG, TC, LDL-C, and increased HDL-C).


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Suplementos Nutricionais/efeitos adversos , LDL-Colesterol , Lipídeos , Hormônios Esteroides Gonadais , Hormônio Foliculoestimulante , Testosterona/uso terapêutico
14.
Oxid Med Cell Longev ; 2022: 3790721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111168

RESUMO

Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus (DM). However, the precise molecular mechanisms remain largely unclear, and it is still a challenging disease to diagnose and treat. The nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome is a critical part of the innate immune system in the host to defend against endogenous danger and pathogenic microbial infections. Dysregulated NLRP3 inflammasome activation results in the overproduction of cytokines, primarily IL-1ß and IL-18, and eventually, inflammatory cell death-pyroptosis. A series of studies have indicated that NLRP3 inflammasome activation participates in the development of DCM, and that corresponding interventions could mitigate disease progression. Accordingly, this narrative review is aimed at briefly summarizing the cell-specific role of the NLRP3 inflammasome in DCM and provides novel insights into developing DCM therapeutic strategies targeting the NLRP3 inflammasome.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Inflamassomos , Interleucina-18 , Leucina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nucleotídeos , Pirina
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981705

RESUMO

Polo-like kinase 1 (PLK1) is a serine/threonine kinase involving lipid metabolism and cardiovascular disease. However, its role in atherogenesis has yet to be determined. The aim of this study was to observe the impact of PLK1 on macrophage lipid accumulation and atherosclerosis development and to explore the underlying mechanisms. We found a significant reduction of PLK1 expression in lipid-loaded macrophages and atherosclerosis model mice. Lentivirus-mediated overexpression of PLK1 promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that PLK1 stimulated the phosphorylation of AMP-activated protein kinase (AMPK), leading to activation of the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) pathway and up-regulation of ATP binding cassette transporter A1 (ABCA1) and ABCG1 expression. Injection of lentiviral vector expressing PLK1 increased reverse cholesterol transport, improved plasma lipid profiles and decreased atherosclerotic lesion area in apoE-deficient mice fed a Western diet. PLK1 overexpression also facilitated AMPK and HSL phosphorylation and enhanced the expression of PPARγ, LXRα, ABCA1, ABCG1 and LPL in the aorta. In summary, these data suggest that PLK1 inhibits macrophage lipid accumulation and mitigates atherosclerosis by promoting ABCA1- and ABCG1-dependent cholesterol efflux via the AMPK/PPARγ/LXRα pathway.


Assuntos
Aterosclerose , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Proteínas de Ciclo Celular/genética , Colesterol/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Serina , Quinase 1 Polo-Like
16.
Artigo em Inglês | MEDLINE | ID: mdl-34484389

RESUMO

BACKGROUND: Diabetes is a major public health concern. In addition, there is some evidence to support curcumin as part of a diabetes treatment program. METHODS: Data from randomized controlled trials were obtained to assess the effects of curcumin versus placebo or western medicine in patients with type 2 diabetes mellitus (T2DM). The study's registration number is CRD42018089528. The primary outcomes included homeostasis model assessment-insulin resistance (HOMA-IR), glycosylated hemoglobin (HbAlc), total cholesterol (TC), and triglyceride (TG). RESULTS: Four trials involving 453 patients were included. The HOMA-IR of curcumin group is lower in Asia (WMD: -2.41, 95% CI: -4.44 to -0.39, P=0.02) and the Middle East subgroups (WMD: -0.60, 95% CI: -0.74 to -0.46, P < 0.00001). The HbAlc in the curcumin group is lower than that in the control group (WMD: -0.69; 95% CI: -0.91, -0.48; P < 0.0001). The TC and TG levels of the curcumin group are lower in the Asia subgroup (TC: WMD: -23.45, 95% CI: -40.04 to -6.84, P=0.006; TG: WMD: -54.14, 95% CI: -95.71 to -12.57, P=0.01), while in the Middle East the difference was of not statistically significant (TC: WMD: 22.91, 95% CI: -16.94 to 62.75, P=0.26; TG: WMD: -4.56, 95% CI: -19.28 to 10.16, P=0.54). CONCLUSION: Based on the current evidence, curcumin may assist in improving the insulin resistance, glycemic control, and decreased TG and TC in patients with T2DM.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34484395

RESUMO

BACKGROUND: Diabetes is a major public health concern. Resveratrol has shown great beneficial effects on hyperglycemia and insulin resistance and as an antioxidant. METHODS: We searched the Chinese and English databases (such as CNKI, PubMed, and Embase) and extracted data from randomized controlled trials (RCTs). Then, RevMan 5.3 was used for bias risk assessment and meta-analysis. The primary outcome indicators include insulin-resistance-related indicators and blood-lipid-related indicators. This systematic review and meta-analysis was registered in PROSPERO (CRD42018089521). RESULTS: Fifteen RCTs involving 896 patients were included. For insulin-resistance-related indicators, the summary results showed that, compared with the control group, homeostasis model assessment for insulin resistance (HOMA-IR) in the resveratrol group is lower (WMD: -0.99; 95% CI -1.61, -0.38; P=0.002). For blood-lipid-related indicators, the total cholesterol (TC) and triglyceride (TG) in the resveratrol group is of no statistical significance (for TC, WMD: -7.11; 95% CI -16.28, 2.06; P=0.13; for TG, WMD: -2.15; 95% CI -5.52, 1.22; P=0.21). For adverse events, the summary results showed that there was no statistical difference in the incidence of adverse events between the resveratrol and control groups (WMD: 2; 95% CI 0.44, 9.03; P=0.37). CONCLUSION: Based on the current evidence, resveratrol may improve insulin resistance, lower fasting blood glucose and insulin levels, and improve oxidative stress in patients with type 2 diabetes mellitus.

18.
Antioxid Redox Signal ; 34(9): 736-749, 2021 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32390459

RESUMO

Significance: Perivascular adipose tissue (PVAT), which is present surrounding most blood vessels, from the aorta to the microvasculature of the dermis, is mainly composed of fat cells, fibroblasts, stem cells, mast cells, and nerve cells. Although the PVAT is objectively present, its physiological and pathological significance has long been ignored. Recent Advances: PVAT was considered as a supporting component of blood vessels and a protective cushion to the vessel wall from the neighboring tissues during relaxation and contraction. Nonetheless, further extensive research found that PVAT actively regulates blood vessel tone through PVAT-derived vasoactive factors, including both relaxing and contracting factors. In addition, PVAT contributes to atherosclerosis through paracrine secretion of a large number of bioactive factors such as adipokines and cytokines. Thereby, PVAT regulates the functions of blood vessels through various mechanisms operating directly on PVAT or on the underlying vessel layers, including vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Critical Issues: PVAT is a unique adipose tissue that plays an essential role in maintaining the vascular structure and regulating vascular function and homeostasis. This review focuses on recent updates on the various PVAT roles in hypertension and atherosclerosis. Future Directions: Future studies should further investigate the actual contribution of alterations in PVAT metabolism to the overall systemic outcomes of cardiovascular disease, which remains largely unknown. In addition, the messengers and underlying mechanisms responsible for the crosstalk between PVAT and ECs and VSMCs in the vascular wall should be systematically addressed, as well as the contributions of PVAT aging to vascular dysfunction.


Assuntos
Tecido Adiposo/metabolismo , Aterosclerose/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Aterosclerose/genética , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hipertensão/genética , Hipertensão/patologia , Células Musculares/metabolismo , Células Musculares/patologia , Músculo Liso Vascular/patologia , Comunicação Parácrina/genética
19.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760156

RESUMO

Hydrogen sulfide (H2S) exerts an anti­atherosclerotic effect and decreases foam cell formation. Lipoprotein­associated phospholipase A2 (Lp­PLA2) is a key factor involved in foam cell formation. However, the association between H2S and Lp­PLA2 expression levels with respect to foam cell formation has not yet been elucidated. The present study investigated whether H2S can affect foam cell formation and potential signalling pathways via regulation of the expression and activity of Lp­PLA2. Using human monocytic THP­1 cells as a model system, it was observed that oxidized low­density lipoprotein (ox­LDL) not only upregulates the expression level and activity of Lp­PLA2, it also downregulates the expression level and activity of Cystathionine γ lyase. Exogenous supplementation of H2S decreased the expression and activity of Lp­PLA2 induced by ox­LDL. Moreover, ox­LDL induced the expression level and activity of Lp­PLA2 via activation of the p38MAPK signalling pathway. H2S blocked the expression levels and activity of Lp­PLA2 induced by ox­LDL via inhibition of the p38MAPK signalling pathway. Furthermore, H2S inhibited Lp­PLA2 activity by blocking the p38MAPK signaling pathway and significantly decreased lipid accumulation in ox­LDL­induced macrophages, as detected by Oil Red O staining. The results of the present study indicated that H2S inhibited ox­LDL­induced Lp­PLA2 expression levels and activity by blocking the p38MAPK signalling pathway, thereby improving foam cell formation. These findings may provide novel insights into the role of H2S intervention in the progression of atherosclerosis.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Espumosas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Front Pharmacol ; 12: 690371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950023

RESUMO

Atrial fibrosis is the basis for the occurrence and development of atrial fibrillation (AF) and is closely related to the Warburg effect, endoplasmic reticulum stress (ERS) and mitochondrion dysfunctions-induced cardiomyocyte apoptosis. Hydrogen sulfide (H2S) is a gaseous signalling molecule with cardioprotective, anti-myocardial fibrosis and improved energy metabolism effects. Nevertheless, the specific mechanism by which H2S improves the progression of atrial fibrosis to AF remains unclear. A case-control study of patients with and without AF was designed to assess changes in H2S, the Warburg effect, and ERS in AF. The results showed that AF can significantly reduce cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate thiotransferase (3-MST) expression and the H2S level, induce cystathionine-ß-synthase (CBS) expression; increase the Warburg effect, ERS and atrial fibrosis; and promote left atrial dysfunction. In addition, AngII-treated SD rats had an increased Warburg effect and ERS levels and enhanced atrial fibrosis progression to AF compared to wild-type SD rats, and these conditions were reversed by sodium hydrosulfide (NaHS), dichloroacetic acid (DCA) or 4-phenylbutyric acid (4-PBA) supplementation. Finally, low CSE levels in AngII-induced HL-1 cells were concentration- and time-dependent and associated with mitochondrial dysfunction, apoptosis, the Warburg effect and ERS, and these effects were reversed by NaHS, DCA or 4-PBA supplementation. Our research indicates that H2S can regulate the AngII-induced Warburg effect and ERS and might be a potential therapeutic drug to inhibit atrial fibrosis progression to AF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA