Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894304

RESUMO

The streaming potential effect has a wide range of applications in geophysics. The core streaming potential experiment requires that there is no external circuit at both ends of the core, but a measurement circuit must be introduced to measure the voltage between both ends of the core which will cause an external circuit. In order to analyze the effect of measurement circuits on the streaming potential experiment, this paper proposes a core current source model, i.e., the core in the streaming potential experiment is regarded as a circuit composed of a current source whose output current is equal to the seepage current and the core resistance. By changing the resistance value of the external circuit, it is found that the seepage current is not affected by the external resistance but by the excitation pressure. Experiments on the streaming potential of 20 sandstone cores under distilled water, 0.01 mol/L, 0.02 mol/L, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.4 mol/L, and 0.6 mol/L sodium chloride solutions revealed that the effect of the external circuit on the streaming potential signal increased with decreasing mineralization. For distilled water-saturated sandstone cores, the effect of the external circuit was about 2%.

2.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732938

RESUMO

Electroosmotic experiments obtain the electroosmotic pressure coefficient of a rock sample by measuring the excitation voltage at both ends of the sample and the pressure difference caused by the excitation voltage. The electroosmotic pressure is very weak and buried in the background noise, which is the most difficult signal to measure in the dynamic-electric coupling experiment, so it is necessary to improve its signal-to-noise ratio. In this paper, for the low signal-to-noise ratio of electroosmotic pressure, the dual pressure sensor method is proposed, i.e., two pressure sensors of the same type are used to measure electroosmotic pressure. Two different data extraction methods, Fast Fourier Transform and Locked Amplification, are utilized to compare the dual pressure sensor method of this paper with the existing single pressure sensor method. The relationship between the electroosmotic pressure coefficient and the excitation frequency, mineralization, permeability, and porosity is analyzed and discussed.

3.
J Acoust Soc Am ; 146(1): 470, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31370637

RESUMO

Hydraulic fractures and preexisting cracks in natural aquifers and hydrocarbon reservoirs are often saturated with fluids. Understanding the elastic wave properties in such a cracked fluid-saturated medium is of importance for many physical and engineering applications such as hydrology, petroleum engineering, oil exploration, induced seismicity, and nuclear waste disposal. In this paper, the scattering of a normally incident longitudinal (P-) wave by a fluid-saturated circular crack in an infinite elastic non-porous matrix is studied. In particular, the mechanism of hydraulic conduction (including the effects of the crack permeability and fluid inertia) inside the crack is incorporated. A semi-analytic solution for this scattering problem is derived. Based on the solution and multiple scattering theorem, an effective medium model is developed to determine the velocity dispersion and attenuation due to wave scattering in an elastic matrix with sparse distribution of aligned cracks. It is shown that the effective P-wave velocity is consistent with Gassmann's theory in the low-frequency limit. The effect of crack permeability on scattering is negligible, but the effect of fluid inertia is important. Specifically, it is found that resonance phenomena can take place inside the cracks at frequencies much lower than the scattering characteristic frequency so that rapid velocity variation can occur at relatively low frequencies. The fluid viscosity plays a damping role in weakening the resonance. The effects of crack thickness and fluid compressibility on scattering dispersion are similar to those in the case of plane-strain (two-dimensional) slit crack.

4.
J Acoust Soc Am ; 125(4): 1942-50, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19354370

RESUMO

Monopole acoustic logs in a homogeneous fluid-saturated porous formation can be simulated by the real-axis integration (RAI) method to analytically solve Biot's equations [(1956a) J. Acoust. Soc. Am. 28, 168-178; (1956b) J. Acoust. Soc. Am. 28, 179-191; (1962) J. Appl. Phys. 33, 1482-1498], which govern the wave propagation in poro-elastic media. Such analytical solution generally is impossible for horizontally stratified formations which are common in reality. In this paper, a velocity-stress finite-difference time-domain (FDTD) algorithm is proposed to solve the problem. This algorithm considers both the low-frequency viscous force and the high-frequency inertial force in poro-elastic media, extending its application to a wider frequency range compared to existing algorithms which are only valid in the low-frequency limit. The perfectly matched layer (PML) is applied as an absorbing boundary condition to truncate the computational region. A PML technique without splitting the fields is extended to the poro-elastic wave problem. The FDTD algorithm is validated by comparisons against the RAI method in a variety of formations with different velocities and permeabilities. The acoustic logs in a horizontally stratified porous formation are simulated with the proposed FDTD algorithm.

5.
J Acoust Soc Am ; 122(1): 135-45, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17614473

RESUMO

Electroacoustic (E-A) logging describes the acoustic response to an electromagnetic (EM) source in a fluid-filled borehole surrounded by a porous medium. The E-A response is simulated by two different methods in this paper. In the coupled method, the EM field and the acoustic field are modeled using Pride's model, which couples Maxwell's equations and Biot's equations. In the uncoupled method, the EM field is uninfluenced by the converted acoustic field, resulting in separate acoustic formulation with an electrokinetic source term derived from the primary EM field. The difference of the transient full waveforms between the above two methods is remarkably small for all examples, thus confirming the validity of using the computationally simpler uncoupled method. It is shown from the simulated waveforms that an EM-accompanying acoustic field is coupled to the EM field and appears with an apparent phase velocity of the EM wave in the formation. Acoustic waves with the conventional acoustic velocities are also seen in the converted full waveforms. For the sandstone models used in this paper, when permeability is less than 1 Darcy, the E-A Stoneley wave amplitude increases with porosity, which is different from that in conventional acoustic-to-acoustic logging.


Assuntos
Acústica , Fenômenos Eletromagnéticos , Sedimentos Geológicos/química , Geologia , Modelos Teóricos , Simulação por Computador , Fenômenos Geológicos , Movimento (Física) , Permeabilidade , Porosidade , Pressão , Reprodutibilidade dos Testes , Reologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA