Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Res ; 245: 117975, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145736

RESUMO

In this study, stone coal mines in the lower reaches of the Zijiang River were adopted as the research object. To analyze the spatial distribution, sources, and health risks of heavy metals in the surrounding soil of stone coal mines, 82 topsoil samples were collected in the study area, and the contents of 8 heavy metals including Cd, Hg, As, Cr, Pb, Cu, Ni, and Zn were determined. The spatial distribution of heavy metals was analyzed using ArcGIS, and the pollution sources of heavy metals were identified using Positive matrix factorization (PMF). Then, Monte Carlo and health risk assessment models were used to evaluate the health risks of different populations. The results showed that the average content of heavy metals followed the order of Zn > Cr > Pb > Cu > Ni > As > Cd > Hg, and the contents of all heavy metals were higher than the soil background values of Hunan Province. The high-value areas of heavy metals content were mostly concentrated in the central region close to areas with a notable concentration of stone coal mines. PMF identified four pollution sources, namely, mining activities (26.9%), atmospheric deposition (18.8%), natural sources (32.8%) and agricultural sources (21.5%). The carcinogenic and non-carcinogenic risks for children were higher than those for adults, with As and Cd posing higher carcinogenic risks to children. Based on the source of health risks, it was determined that the health risks could be primarily attributed to agricultural sources, and As was the main heavy metal causing health risks. This study provides theoretical support for treating heavy metal pollution in mining basins.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Solo , Mercúrio/análise , Medição de Risco , Carvão Mineral , China
2.
Ecotoxicol Environ Saf ; 251: 114516, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36628877

RESUMO

Mercury (Hg) pollution is a well-recognized global environmental and health issue and exhibits distinctive persistence, neurotoxicity, bioaccumulation, and biomagnification effects. As the largest global Hg reservoir, the Hg cumulatively stored in soils has reached as high as 250-1000 Gg. Even more concerning is that global soil-rice systems distributed in many countries have become central to the global Hg cycle because they are both a major food source for more than 3 billion people worldwide and the central bridge linking atmospheric and soil Hg circulation. In this review, we discuss the form distribution, transformation, and bioavailability of Hg in soil-rice systems by focusing on the Hg methylation and demethylation pathways and distribution, uptake, and accumulation in rice plants and the effects of Hg on the community structure and ecological functions of microorganisms in soil-rice systems. In addition, we clarify the mechanisms through which commonly used humus and biochar organic amendments influence Hg and its environmental effects in soil-rice systems. The review also elaborates on the advantages of sulfur-modified biochars and their critical role in controlling Hg migration and bioavailability in soils. Finally, we provide key information about Hg pollution in soil-rice systems, which is of great significance for developing appropriate strategies and mitigation planning to limit Hg bioconcentration in rice crops and achieving key global sustainable development goals, such as the guarantee of food security and the promotion of sustainable agriculture.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Solo/química , Oryza/metabolismo , Agricultura , Poluentes do Solo/análise
3.
Ecotoxicol Environ Saf ; 229: 113058, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890984

RESUMO

Biochar and sulphur (S) are important factors regulating the level, speciation and transformation of mercury (Hg), leading to alterations in the assemblage of the soil microbial community. However, variations in the taxonomic attributes of the rhizosphere soil bacterial community arising from the Hg speciation in paddy soil, amended with natural S-rich biochar (NSBC) derived from the pyrolysis of S-rich oilseed rape straw, remain unclear. Herein, a rice pot experiment was conducted. Hg-polluted paddy soils were amended with NSBC and low-S biochar (LSBC) to evaluate the role of Hg chemical form affected by NSBC in regulating the taxonomic attributes of rhizosphere soil, including microbial abundance, composition, and ecological clusters within the co-occurrence network of microbial communities. Results showed that microbial abundance was higher in soils with lower Hg levels, and mean increases of 149 observed operational taxonomic units (OTUs) and 238 predicted OTUs (Chao 1) were observed, with a 1 mg kg-1 decrease in the total Hg (T-Hg) content. Among the 13 predictor variables, the T-Hg content was the strongest and most consistent predictor of the bacterial taxonomic attributes. This finding may be attributed to the fact that the drastic reduction in T-Hg and Hg bioavailability induced by NSBC results in the decrease of Hg stress on the soil microbiome. Moreover, NSBC amendment shifted the ecological clusters toward the amelioration of Hg pollution.


Assuntos
Mercúrio , Oryza , Poluentes do Solo , Carvão Vegetal , Mercúrio/análise , Rizosfera , Solo , Poluentes do Solo/análise , Enxofre
4.
Environ Sci Ecotechnol ; 8: 100131, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36156992

RESUMO

The effect of the interaction between lignin-phenol monomers and holocellulose in natural biomass on the distribution of pyrolysis products remains unknown. The results of this study showed that the interaction between lignin and holocellulose during the pyrolysis of natural biomass became more pronounced as the pyrolysis temperature increased. The interaction between lignin and holocellulose in the natural crosslinked structure promoted the generation of CO and inhibited the generation of CO2 at 750 °C. Lignin inhibited the decarboxylic reaction of hemicellulose during pyrolysis but was important for the generation of levoglucosan during cellulose pyrolysis. Holocellulose slowed the demethoxyreaction of lignin guaiacol but promoted the removal of aliphatic hydrocarbon substituents from the aromatic ring. The cinnamyl phenol monomers of lignin increased the rates of change of biomass pyrolysis products with the lignin mass fraction at 400 °C. However, when the pyrolysis temperature increased to 750 °C, all types of lignin phenol monomers increased the rates of change of the biomass pyrolysis products. Our results provide new insights that have implications for the development of pyrolysis techniques for the resource recycling of various types of biomass for the preparation of high-grade gaseous and liquid fuels.

5.
Environ Pollut ; 286: 117290, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984776

RESUMO

Biochar amendment has the potential to reduce methylmercury (MeHg) uptake by rice grains in soil-rice ecosystem. Considering that sulfur can strongly bind Hg and thus reduce its bioavailability, S-modified biochar has been used to immobilize Hg in soils. However, whether natural S-enriched biochar can further reduce Hg and MeHg phytoavailability remains unknown. Moreover, the rhizosphere is one of the most important microbial hotspots regulating the pollutant dynamics in terrestrial ecosystems. Therefore, it is of greater practical significance to examine the impact of biochar amendment on MeHg production and phytoavailability in the rhizosphere versus nonrhizosphere. Here, by conducting a pot experiment, we evaluated the efficacy of biochar derived from sulfur-enriched oilseed rape straw to reduce MeHg accumulation in rice. The results demonstrated that: (1) biochar-induced enhancement of chloride ion and sulfate levels in the overlying water and pore water facilitate microbial methylation of Hg and thus MeHg production in rhizosphere soil. (2) biochar amendment increased rhizosphere soil sulfur content and humic acid-like substances, strengthening MeHg binding to soil, and thus reducing grain MeHg levels by 47%-75%. Our results highlight the necessity to applying natural sulfur-rich biochar accompanied with exogenous sulfur to further reduce MeHg phytoavailability.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Oryza , Poluentes do Solo , Carvão Vegetal , Ecossistema , Mercúrio/análise , Metilação , Rizosfera , Solo , Poluentes do Solo/análise , Enxofre
6.
Chemosphere ; 236: 124405, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545202

RESUMO

Mercury (Hg) pollution or organic amendments (OA) may individually induce changes in the microbial community of paddy soils. However, little is known regarding the interaction of Hg and OA and the effect of different OA applications on the microbial community assemblage in Hg-polluted paddy soil. A soil incubation experiment was performed by applying three organic amendments (OA), namely a food-waste compost (FC), and its HA and FA, into an Hg-polluted paddy soil to examine the changes in the microbial community and merA/merB gene abundance. The results showed that the OA treatments promoted total (SOC) and dissolved organic carbon (DOC) in soils, which may harbor copiotrophic bacteria. The HA and FA treatments decreased microbial diversity and richness along with an increase of water-soluble Hg (WHg) through the complexation of DOC to Hg, which may be mainly attributed to the enhanced Hg biotoxicity to soil microbiome induced by the increased WHg under these two treatments. Additionally, the WHg enhancement also contributed to the increase of Hg-resistant bacteria and merA/merB gene abundance, and consequently, induced changes in the microbial community. These results indicated the interaction of Hg and different OA induced the variation of WHg fraction in paddy soil, which played a fundamental role in the distinct responses of the microbial community assemblage. Collectively, the application of FA and HA to Hg-polluted soil should be limited considering Hg risk to microbiome, and FC can be an alternative.


Assuntos
Mercúrio/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Carbono/análise , Fertilizantes , Genes Bacterianos , Concentração de Íons de Hidrogênio , Mercúrio/análise , Microbiota/efeitos dos fármacos , Microbiota/genética , Microbiota/fisiologia , Nitrogênio/análise , Poluentes do Solo/análise , Solubilidade
7.
J Agric Food Chem ; 67(11): 3106-3113, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807137

RESUMO

Little is known on the effect of application of different nitrogen (N) fertilizers on soil organic carbon (SOC) sequestration in soil humic substances (HS). We investigated HS molecular characteristics in an Orthic Acrisol, southwestern China, under 2-year field fertilization of a urea (U), a polymer-coated urea (PCU) and a biochar-coated urea (BCU) using 13C-CPMAS-NMR spectroscopy. Results showed that N fertilization promoted SOC sequestration into HS and favored alkyl-C and aromatic-C rather than O-alkyl-C and carbonyl-C for humic acids and humin in soil. Application of PCU and BCU may better enhance vegetable yield, SOC sequestration, and HS stability than the U application, which may benefit from longer time of N existence and higher total N in soil. Among the N treatments, BCU application mostly affected the compositions and stability of SOC in the HS for the OC input and prime effect of biochar for SOC transformation.


Assuntos
Sequestro de Carbono , Fertilizantes/análise , Substâncias Húmicas/análise , Triticum/crescimento & desenvolvimento , Ureia/metabolismo , Verduras/crescimento & desenvolvimento , Carvão Vegetal/química , Carvão Vegetal/metabolismo , China , Produção Agrícola , Solo/química , Triticum/metabolismo , Ureia/química , Verduras/metabolismo
8.
Chemosphere ; 232: 356-365, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158630

RESUMO

Organic amendments (OA) have been applied in many mercury (Hg)-polluted paddy soils to meet increasing food demands with scarce land resources. However, little is known on the effects of different OAs on Hg dissolution and the composition of dissolved organic matter (DOM) in soil pore waters, both of which may be associated with Hg mobility. Consequently, DOM composition and Hg release levels were investigated in soil pore waters after applying food waste compost (FC), fulvic acids (FA) and humic acids (HA) to Hg-polluted paddy soils. FA and HA treatments promoted increased abundances of humic- and fulvic-like substances in pore water DOM while FC amendment increased soluble microbial by-products. FA amendment and high levels of both HA and FC amendments greatly promoted Hg dissolution in pore waters that could be attributed to the complexation of Hg with different DOM components. However, among all DOM components, only UVA fulvic and visible humic-like substances were positively correlated with Hg release levels and total organic carbon. These results indicate that discrepant DOM compositions are induced by different OA. Further, these differences may be associated with differential Hg dissolution in pore waters. Consequently, FA amendment and high level of FC or HA amendments should be limited to reduce potential Hg release into pore waters.


Assuntos
Recuperação e Remediação Ambiental/métodos , Mercúrio/análise , Poluentes Químicos da Água/análise , Benzopiranos , Poluição Ambiental , Substâncias Húmicas/análise , Solo , Solubilidade
9.
Environ Toxicol Chem ; 27(1): 112-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18092880

RESUMO

During laboratory and field studies, a fraction of contaminants in soils or sediments often is observed to be highly resistant to desorption. This desorption-resistant fraction may have significant effects on long-term fate and exposure of soil/ sediment-bound contaminants in particular, causing much reduced availability and contaminant persistence. Previous work by many research groups has indicated that this nonideal desorption behavior could be better predicted with biphasic desorption models. The present study further investigated the release of naphthalene and phenanthrene from sediments during and after cosolvent treatment. Experimental results indicate that release of these two compounds under cosolvent conditions can be accurately predicted with a previously developed, biphasic desorption model when the solubility enhancement effect of cosolvent is accounted for using standard activity coefficient ratios. In addition, desorption of the residual contaminants after cosolvent treatment follows the original biphasic desorption model very well, suggesting that cosolvent treatment increases only the aqueous solubility and has little effect on the nature of the desorption-resistant fraction and that cosolvent desorption is a valuable analytical tool for quickly measuring the magnitude of the desorption-resistant fraction. The present findings might have important implications for the mechanisms controlling resistant desorption of hydrophobic organic compounds and for predicting the availability and long-term fate of contaminants in soils and sediments.


Assuntos
Naftalenos/isolamento & purificação , Fenantrenos/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Absorção , Sedimentos Geológicos , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Compostos Orgânicos/isolamento & purificação , Pesquisa , Solventes
10.
Electrophoresis ; 25(14): 2374-83, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15274020

RESUMO

A comprehensive two-dimensional capillary liquid chromatography and capillary zone electrophoresis system coupled with tandem matrix assisted laser desorption/ionization-time of flight-time of flight-mass spectrometry (MALDI-TOF-TOF-MS) proteomics analyzer is presented. Protein/peptide samples were separated by capillary high-performance liquid chromatography (cHPLC). The effluents from cHPLC (the first dimension) were continuously transferred into capillary zone electrophoresis (CZE, the second dimension) through a novel valve-free hydrodynamic sampling interface. The CZE effluents were mixed with alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix sheath flow via CE-MALDI interface, and then directly deposited on the MALDI target at a 3 s time-interval for further MS analysis. The high efficiency of the overall system was demonstrated by analysis of proteins in D20 (human hepatocellular carcinoma model in nude mice with high metastatic potential) liver cancer tissue. More than 300 proteins were identified, which proved the system potential for high-throughput analysis and application in proteomics.


Assuntos
Cromatografia/métodos , Eletroforese Capilar/métodos , Neoplasias Hepáticas/metabolismo , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Cromatografia/instrumentação , Eletroforese Capilar/instrumentação , Humanos , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA