Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(12): 126201, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579216

RESUMO

The competition between on-site electronic correlation and local crystal field stands out as a captivating topic in research. However, its physical ramifications often get overshadowed by influences of strong periodic potential and orbital hybridization. The present study reveals this competition may become more pronounced or even dominant in two-dimensional systems, driven by the combined effects of dimensional confinement and orbital anisotropy. This leads to electronic orbital reconstruction in certain perovskite superlattices or thin films. To explore the emerging physics, we investigate the interfacial orbital disorder-order transition with an effective Hamiltonian and how to modulate this transition through strains.

2.
Entropy (Basel) ; 26(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38248197

RESUMO

This paper presents an adaptive learning structure based on neural networks (NNs) to solve the optimal robust control problem for nonlinear continuous-time systems with unknown dynamics and disturbances. First, a system identifier is introduced to approximate the unknown system matrices and disturbances with the help of NNs and parameter estimation techniques. To obtain the optimal solution of the optimal robust control problem, a critic learning control structure is proposed to compute the approximate controller. Unlike existing identifier-critic NNs learning control methods, novel adaptive tuning laws based on Kreisselmeier's regressor extension and mixing technique are designed to estimate the unknown parameters of the two NNs under relaxed persistence of excitation conditions. Furthermore, theoretical analysis is also given to prove the significant relaxation of the proposed convergence conditions. Finally, effectiveness of the proposed learning approach is demonstrated via a simulation study.

3.
Sci Bull (Beijing) ; 69(3): 319-324, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38105164

RESUMO

Van Hove singularities in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities. It is also known that a nontrivial Berry phase derived from spin-orbit coupling can introduce an intriguing decoration into the interactions and thus alter correlated phenomena. However, it is unclear how and what type of new physics can emerge in a system featured by the interplay between van Hove singularities (VHSs) and the Berry phase. Here, based on a general Rashba model on the square lattice, we comprehensively explore such an interplay and its significant influence on the competing electronic instabilities by performing a parquet renormalization group analysis. Despite the existence of a variety of comparable fluctuations in the particle-particle and particle-hole channels associated with higher-order VHSs, we find that the chiral p±ip pairings emerge as two stable fixed trajectories within the generic interaction parameter space, namely the system becomes a robust topological superconductor. The chiral pairings stem from the hopping interaction induced by the nontrivial Berry phase. The possible experimental realization and implications are discussed. Our work sheds new light on the correlated states in quantum materials with strong spin-orbit coupling (SOC) and offers fresh insights into the exploration of topological superconductivity.

4.
Sci Bull (Beijing) ; 69(7): 885-892, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38383234

RESUMO

Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface-dependent vortex core states have been observed in the newly discovered kagome superconductors CsV3Sb5. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface states, its origin remains elusive. In this study, we present observations of tunable vortex bound states (VBSs) in two chemically-doped kagome superconductors Cs(V1-xTrx)3Sb5 (Tr = Ta or Ti), using low-temperature scanning tunneling microscopy/spectroscopy. The CsV3Sb5-derived kagome superconductors exhibit full-gap-pairing superconductivity accompanied by the absence of long-range charge orders, in contrast to pristine CsV3Sb5. Zero-energy conductance maps demonstrate a field-driven continuous reorientation transition of the vortex lattice, suggesting multiband superconductivity. The Ta-doped CsV3Sb5 displays the conventional cross-shaped spatial evolution of Caroli-de Gennes-Matricon bound states, while the Ti-doped CsV3Sb5 exhibits a sharp, non-split zero-bias conductance peak (ZBCP) that persists over a long distance across the vortex. The spatial evolution of the non-split ZBCP is robust against surface effects and external magnetic field but is related to the doping concentrations. Our study reveals the tunable VBSs in multiband chemically-doped CsV3Sb5 system and offers fresh insights into previously reported Y-shaped ZBCP in a non-quantum-limit condition at the surface of kagome superconductor.

5.
Nat Commun ; 15(1): 5576, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956078

RESUMO

Strongly correlated materials respond sensitively to external perturbations such as strain, pressure, and doping. In the recently discovered superconducting infinite-layer nickelates, the superconducting transition temperature can be enhanced via only ~ 1% compressive strain-tuning with the root of such enhancement still being elusive. Using resonant inelastic x-ray scattering (RIXS), we investigate the magnetic excitations in infinite-layer PrNiO2 thin films grown on two different substrates, namely SrTiO3 (STO) and (LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) enforcing different strain on the nickelates films. The magnon bandwidth of PrNiO2 shows only marginal response to strain-tuning, in sharp contrast to the enhancement of the superconducting transition temperature Tc in the doped superconducting samples. These results suggest the bandwidth of spin excitations of the parent compounds is similar under strain while Tc in the doped ones is not, and thus provide important empirics for the understanding of superconductivity in infinite-layer nickelates.

6.
Sci Bull (Beijing) ; 69(15): 2328-2331, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38944634
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA