Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2402407121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959045

RESUMO

Trade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap "n" collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR-MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.


Assuntos
Hemípteros , Proteínas de Insetos , Resistência a Inseticidas , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G , Animais , Hemípteros/genética , Hemípteros/metabolismo , Resistência a Inseticidas/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Feminino , Inseticidas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética
2.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377137

RESUMO

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Assuntos
Hemípteros , Inseticidas , Receptores Nicotínicos , Animais , Receptores Nicotínicos/genética , Inseticidas/farmacologia , Hemípteros/genética , Drosophila melanogaster , Neonicotinoides/farmacologia , Mutação
3.
Chemphyschem ; : e202400332, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690751

RESUMO

A series of NaGd1-x-ySiO4: y Dy3+-x Eu3+ phosphors were synthesized by a high-temperature solid-phase method. The optimal doping ion concentration of Dy3+ ions for this phosphor was determined to be 1 % from the emission spectra. The energy transfer between Dy3+ and Eu3+ ions at 351 nm was investigated by photoluminescence spectra and fluorescence decay curves. At the excitation wavelengths of 275 nm, 351 nm, 366 nm, and 394 nm, a change from yellow to white to red light can be realized by adjusting the doping concentration of Eu/Dy ions. Particularly, by testing the temperature-dependent fluorescence spectrum of the phosphor, it can be found that the luminous intensity of the phosphor is as high as 96 % when 394 nm excitation is employed at 413 K. It was the maximum at this temperature comparing with other phosphors as far as we know. The color coordinate values show that the NaGd1-x-ySiO4:×Dy3+-y Eu3+ phosphors are very close to the white light color coordinates (x=0.33, y=0.33) under 351 nm excitation. Meanwhile, the correlated color temperature is between 5062-7104 K. These results indicate that this phosphor is a promising candidate for high-quality WLED.

4.
Environ Res ; 250: 118520, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401683

RESUMO

The sedentary and less active lifestyle of modern college students has a significant impact on the physical and mental well-being of the college community. Campus Green Spaces (GSs) are crucial in promoting physical activity and improving students' health. However, previous research has focused on evaluating campuses as a whole, without considering the diverse spatial scenarios within the campus environment. Accordingly, this study focused on the young people's residential scenario in university and constructed a framework including a comprehensive set of objective and subjective GSs exposure metrics. A systematic, objective exposure assessment framework ranging from 2D (GSs areas), and 2.5D (GSs visibility) to 3D (GSs volume) was innovatively developed using spatial analysis, deep learning technology, and unmanned aerial vehicle (UAV) measurement technology. Subjective exposure metrics incorporated GSs visiting frequency, GSs visiting duration, and GSs perceived quality. Our cross-sectional study was based on 820 university students in Nanjing, China. Subjective measures of GSs exposure, physical activity, and health status were obtained through self-reported questionnaires. The Generalized Linear Model (GLM) was used to evaluate the associations between GSs exposure, physical activity, and perceived health. Physical activity and social cohesion were considered as mediators, and path analysis based on Structural Equation Modeling (SEM) was used to disentangle the mechanisms linking GSs exposure to the health status of college students. We found that (1) 2D indicator suggested significant associations with health in the 100m buffer, and the potential underlying mechanisms were: GSs area → Physical activity → Social cohesion → Physical health → Mental health; GSs area → Physical activity → Social cohesion → Mental health. (2) Subjective GSs exposure indicators were more relevant in illustrating exposure-response relationships than objective ones. This study can clarify the complex nexus and mechanisms between campus GSs, physical activity, and health, and provide a practical reference for health-oriented campus GSs planning.


Assuntos
Exercício Físico , Estudantes , Humanos , Estudantes/psicologia , Masculino , Adulto Jovem , Feminino , Universidades , Estudos Transversais , China , Adolescente , Nível de Saúde
5.
Pestic Biochem Physiol ; 201: 105863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685216

RESUMO

The whitefly Bemisia tabaci poses a significant threat to various crops and ornamental plants and causes severe damage to the agricultural industry. Over the past few decades, B. tabaci has developed resistance to several pesticides, including imidacloprid. Therefore, elucidating the mechanism that leads to insecticide detoxification is very important for controlling B. tabaci and managing whitefly resistance to neonicotinoid insecticides. Among insect detoxification enzymes, glutathione S-transferase (GST) is an important phase II detoxification enzyme that helps detoxify exogenous toxic substances. In this study, we cloned the BtGSTz1 gene and observed that its expression level was greater in imidacloprid-resistant populations than sensitive populations of B. tabaci. By silencing BtGSTz1 via RNA interference, we found a significant increase in the mortality of imidacloprid-resistant B. tabaci. Additionally, prokaryotic expression and in vitro metabolism studies revealed that the recombinant BtGSTz1 protein could metabolize 36.36% of the total imidacloprid, providing direct evidence that BtGSTz1 plays a crucial role in the detoxification of imidacloprid. Overall, our study elucidated the role of GSTs in physiological activities related to insecticide resistance, which helps clarify the resistance mechanisms conferred by GSTs and provides useful insights for sustainable integrated pest management.


Assuntos
Glutationa Transferase , Hemípteros , Resistência a Inseticidas , Inseticidas , Neonicotinoides , Nitrocompostos , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Hemípteros/metabolismo , Animais , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Interferência de RNA , Imidazóis/farmacologia , Imidazóis/metabolismo
6.
Plant J ; 112(3): 694-708, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36086899

RESUMO

Rapid callose accumulation has been shown to mediate defense in certain plant-virus interactions. Exposure to the green leaf volatile (Z)-3-hexenol (Z-3-HOL) can prime tomato (Solanum lycopersicum) for an enhanced defense against subsequent infection by whitefly-transmitted Tomato yellow leaf curl virus (TYLCV). However, the molecular mechanisms affecting Z-3-HOL-induced resistance are poorly understood. Here, we explored the mechanisms underlying Z-3-HOL-induced resistance against whitefly-transmitted TYLCV infection and the role of callose accumulation during this process. Tomato plants pre-treated with Z-3-HOL displayed callose priming upon whitefly infestation. The callose inhibitor 2-deoxy-d-glucose abolished Z-3-HOL-induced resistance, confirming the importance of callose in this induced resistance. We also found that Z-3-HOL pre-treatment enhanced salicylic acid levels and activated sugar signaling in tomato upon whitefly infestation, which increased the expression of the cell wall invertase gene Lin6 to trigger augmented callose deposition against TYLCV infection resulting from whitefly transmission. Using virus-induced gene silencing, we demonstrated the Lin6 expression is relevant for sugar accumulation mediated callose priming in restricting whitefly-transmitted TYLCV infection in plants that have been pre-treated with Z-3-HOL. Moreover, Lin6 induced the expression of the callose synthase gene Cals12, which is also required for Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. These findings highlight the importance of sugar signaling in the priming of callose as a defense mechanism in Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. The results will also increase our understanding of defense priming can be useful for the biological control of viral diseases.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Begomovirus/genética , Solanum lycopersicum/genética , Hemípteros/genética , Doenças das Plantas/genética , Açúcares
7.
Pestic Biochem Physiol ; 194: 105470, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532344

RESUMO

Flavonoids are ubiquitously distributed in plants, showing pleiotropic effects in defense against abiotic and biotic stresses. Although it has been shown that seed priming with flavonoids can enhance plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stresses, especially for herbivorous insects. Here, we investigated whether treatment of tomato (Solanum lycopersicum) seeds with rutin improves plant resistance against the whitefly (Bemisia tabaci). Specifically, we measured the effect of rutin seed treatment on tomato seedling vigour, plant growth, feeding behavior and performance of B. tabaci on plants grown from control and rutin-treated seeds, and plant defense responses to B. tabaci attack. We found that seed treatment with different concentrations of rutin (viz 1, 2, 5, 10, and 20 mM) had minimal impact on shoot growth. Furthermore, seed treatment of rutin reduced the developmental rate of nymphs, the fecundity and feeding efficiency of adult females on plants grown from these seeds. The enhanced resistance of tomato against B. tabaci is closely associated with increased flavonoids accumulation, callose deposition and the expression of jasmonic acid (JA)-dependent defense genes. Additionally, callose deposition and expression of JA-dependent genes in tomato plants grown from rutin-treated seeds significantly increased upon B. tabaci infestation. These results suggest that seed treatment with rutin primes tomato resistance against B. tabaci, and are not accompanied by reductions in shoot growth. Defense priming by seed treatments may therefore be suitable for commercial exploitation.


Assuntos
Hemípteros , Solanum lycopersicum , Animais , Feminino , Hemípteros/fisiologia , Rutina/farmacologia , Flavonoides/farmacologia , Sementes
8.
Pestic Biochem Physiol ; 194: 105468, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532309

RESUMO

High level resistance for a variety of insecticides has emerged in Bemisia tabaci, a globally notorious insect. Neonicotinoid insecticides have been applied widely to control B. tabaci. Whether a differentially expressed gene CYP6DB3 discovered from transcriptome data of B. tabaci is involved in the resistance to neonicotinoid insecticides remains unclear. In the study, CYP6DB3 expression was significantly up-regulated in both thiamethoxam- and imidacloprid-resistant strains relative to the susceptive strains. We also found that CYP6DB3 expression was up-regulated after B. tabaci adults were exposed to thiamethoxam and imidacloprid. Moreover, knocking down CYP6DB3 expression via feeding corresponding dsRNA significantly reduced CYP6DB3 mRNA levels by 34.1%. Silencing CYP6DB3 expression increased the sensitivity of B. tabaci Q adults against both thiamethoxam and imidacloprid. Overexpression of CYP6DB3 gene reduced the toxicity of imidacloprid and thiamethoxam to transgenic D. melanogaster. In addition, metabolic studies showed that CYP6DB3 can metabolize 24.41% imidacloprid in vitro. Collectively, these results strongly support that CYP6DB3 plays an important role in the resistance of B. tabaci Q to imidacloprid and thiamethoxam. This work will facilitate a deeper insight into the part of cytochrome P450s in the evolution of insecticide resistance and provide a theoretical basis for the development of new integrated pest resistance management.


Assuntos
Hemípteros , Inseticidas , Animais , Tiametoxam/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Drosophila melanogaster/metabolismo , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
9.
Pestic Biochem Physiol ; 194: 105469, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532310

RESUMO

Bemisia tabaci (Hemiptera: Gennadius) is a notorious pest that is capable of feeding on >600 kinds of agricultural crops. Imidacloprid is critical in managing pest with sucking mouthparts, such as B. tabaci. However, the field population of B. tabaci has evolved resistance because of insecticide overuse. The overexpression of the detoxification enzyme cytochrome P450 monooxygenase is considered the main mechanism of imidacloprid resistance, but the mechanism underlying gene regulation remains unclear. MicroRNAs are a type of endogenous small molecule compounds that is fundamental in regulating gene expression at the post-transcriptional level. Whether miRNAs are related to the imidacloprid resistance of B. tabaci remains unknown. To gain deep insight into imidacloprid resistance, we conducted on miRNAs expression profiling of two B. tabaci Mediterranean (MED) strains with 19-fold resistance through deep sequencing of small RNAs. A total of 8 known and 1591 novel miRNAs were identified. In addition, 16 miRNAs showed significant difference in expression levels between the two strains, as verified by quantitative reverse transcription PCR. Among these, novel_miR-376, 1517, and 1136 significantly expressed at low levels in resistant samples, decreasing by 36.9%, 60.2%, and 15.6%, respectively. Moreover, modulating novel_miR-1517 expression by feeding with 1517 inhibitor and 1517 mimic significantly affected B. tabaci imidacloprid susceptibility by regulating CYP6CM1 expression. In this article, miRNAs related to imidacloprid resistance of B. tabaci were systematically screened and identified, providing important information for the miRNA-based technological innovation for this pest management.


Assuntos
Hemípteros , Inseticidas , MicroRNAs , Animais , Hemípteros/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , MicroRNAs/genética
10.
Pestic Biochem Physiol ; 196: 105635, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945266

RESUMO

The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.


Assuntos
Hemípteros , Inseticidas , Animais , Neonicotinoides/farmacologia , Neonicotinoides/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Hemípteros/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismo , Resistência a Inseticidas/genética , Difosfato de Uridina/metabolismo
11.
Pharm Biol ; 61(1): 514-519, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36891628

RESUMO

CONTEXT: Derazantinib-an orally bioavailable, ATP competitive, multikinase inhibitor-has strong activity against fibroblast growth factor receptors (FGFR)2, FGFR1, and FGFR3 kinases. It has preliminary antitumor activity in patients with unresectable or metastatic FGFR2 fusion-positive intrahepatic cholangiocarcinoma (iCCA). OBJECTIVE: This experiment validates a novel sensitive and rapid method for the determination of derazantinib concentration in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and applies it to the study of drug-drug interaction between derazantinib and naringin in vivo. MATERIALS AND METHODS: A Xevo TQ-S triple quadrupole tandem mass spectrometer was used for mass spectrometry monitoring in selective reaction monitoring (SRM) mode with transitions of m/z 468 96 → 382.00 for derazantinib and m/z 488.01 → 400.98 for pemigatinib, respectively. The pharmacokinetics of derazantinib (30 mg/kg) was investigated in Sprague-Dawley (SD) rats divided into two groups (with the oral pretreatment of 50 mg/kg naringin or not). RESULTS: The newly optimized UPLC-MS/MS method was suitable for the determination of derazantinib in rat plasma. It was also successfully employed to evaluate the effect of naringin on derazantinib metabolism in rats. After pretreatment with naringin, there was no significant difference in the pharmacokinetic parameters (AUC0→t, AUC0→∞, t1/2, CLz/F, and Cmax) of derazantinib when compared with derazantinib alone. CONCLUSION: Co-administration of naringin with derazantinib was not associated with significant changes in pharmacokinetic parameters. Thus, this study suggests that the combination of derazantinib with naringin can safely be administered concomitantly without dose adjustment.


Assuntos
Espectrometria de Massas em Tandem , Ratos , Animais , Ratos Sprague-Dawley , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes
12.
Molecules ; 27(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35956949

RESUMO

The Kleier model and Carrier-mediated theory are effective for molecularly designing pesticides with phloem mobility. However, the single Kleier model or Carrier-mediated theory cannot achieve a reliable explanation of the phloem mobility of all exogenous substances. A detailed investigation of the two models and the scope of their applications can provide a more accurate and highly efficient basis for the guidance of the design and development of phloem-mobile pesticides. In the present paper, a strategy using active ingredient-amino acid conjugates as mode compounds is developed based on Carrier-mediated theory. An N-alkylated amino acid is used to improve the pesticide's physicochemical properties following the Kleier model, thus allowing the conjugates to fall on the predicted and more accessible transportation region of phloem. Moreover, the influence of this movement on phloem is inspected by the Kleier model and Carrier-mediated theory. To verify this strategy, a series of N-alkylated phenazine-1-carboxylic acid-glycine compounds (PCA-Gly) were designed and synthesized. The results related to the castor bean seeds (R. communis L.) indicated that all the target compounds (4a−4f) had phloem mobility. The capacity for phloem mobility shows that N-alkylated glycine containing small substituents can significantly improve PCA phloem mobility, such as 4c(i-C3H7-N) > 4a(CH3-N) ≈ 4b(C2H5-N) > 4d (t-C4H9-N) > PCA-Gly > 4e(C6H5-N) > 4f(CH2COOH-N), with an oil−water partition coefficient between 1.2~2.5. In particular, compounds 4a(CH3-N), 4b(C2H5-N), and 4c(i-C3H7-N) present better phloem mobility, with the average concentrations in phloem sap of 14.62 µΜ, 13.98 µΜ, and 17.63 µΜ in the first 5 h, which are 8 to 10 times higher than PCA-Gly (1.71 µΜ). The results reveal that the Kleier model and Carrier-mediated theory play a guiding role in the design of phloem-mobile pesticides. However, the single Kleier model or Carrier-mediated theory are not entirely accurate. Still, there is a synergism between Carrier-mediated theory and the Kleier model for promoting the phloem transport of exogenous compounds. Therefore, we suggest the introduction of endogenous plant compounds as a promoiety to improve the phloem mobility of pesticides through Carrier-mediated theory. It is necessary to consider the improvement of physicochemical properties according to the Kleier model, which can contribute to a scientific theory for developing phloem-mobile pesticides.


Assuntos
Fabaceae , Praguicidas , Aminoácidos/química , Fabaceae/metabolismo , Glicina/farmacologia , Praguicidas/análise , Fenazinas , Floema/química , Ricinus/metabolismo
13.
Fungal Genet Biol ; 152: 103568, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991663

RESUMO

Metarhizium anisopliae is an important entomopathogenic species and model for arthropod-fungus interaction studies. This fungus harbors a diverse arsenal of unexplored secondary metabolite biosynthetic gene clusters, which are suggested to perform diverse roles during host interaction and soil subsistence as a saprophytic species. Here we explored an unusual carnitine acyltransferase domain-containing highly reducing polyketide synthase found in the genome of M. anisopliae. Employing heterologous expression in Aspergillus nidulans, two new polyketides were obtained, named BAA and BAB, as well as one known polyketide [(2Z,4E,6E)-octa-2,4,6-trienedioic acid]. Intra-hemocoel injection of the most abundant compound (BAA) in the model-arthropod Galleria mellonella larvae did not induce mortality or noticeable alterations, suggesting that this compound may not harbor insecticidal activity. Also, the potential role of such molecules in polymicrobial interactions was evaluated. Determination of minimum inhibitory concentration assays using distinct fungal species revealed that BAA and BAB did not alter Cryptococcus neoformans growth, while BAA exhibited weak antifungal activity against Saccharomyces cerevisiae. Unexpectedly, these compounds increased Candida albicans growth compared to control conditions. Furthermore, BAA can mitigate the fungicidal effects of fluconazole over C. albicans. Although the exact role of these compounds on the M. anisopliae life cycle is elusive, the described results add up to the complexity of secondary metabolites produced by Metarhizium spp. Moreover, up to our knowledge, these are the first polyketides isolated from filamentous fungi that can boost the growth of another fungal species.


Assuntos
Vias Biossintéticas/genética , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Metarhizium/genética , Metarhizium/metabolismo , Policetídeos/metabolismo , Policetídeos/farmacologia , Animais , Antifúngicos , Aspergillus nidulans/genética , Fungos/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Larva/microbiologia , Interações Microbianas/fisiologia , Testes de Sensibilidade Microbiana , Mariposas , Família Multigênica , Policetídeos/química , Policetídeos/isolamento & purificação , Metabolismo Secundário/genética
14.
Org Biomol Chem ; 19(3): 587-595, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33242032

RESUMO

The hancockiamides are an unusual new family of N-cinnamoylated piperazines from the Australian soil fungus Aspergillus hancockii. Genomic analyses of A. hancockii identified a biosynthetic gene cluster (hkm) of 12 genes, including two single-module nonribosomal peptide synthetase (NRPS) genes. Heterologous expression of the hkm cluster in A. nidulans confirmed its role in the biosynthesis of the hancockiamides. We further demonstrated that a novel cytochrome P450, Hkm5, catalyses the methylenedioxy bridge formation, and that the PAL gene hkm12 is dispensable, but contributes to increased production of the cinnamoylated hancockiamides. In vitro enzymatic assays and substrate feeding studies demonstrated that NRPS Hkm11 activates and transfers trans-cinnamate to the piperazine scaffold and has flexibility to accept bioisosteric thienyl and furyl analogues. This is the first reported cinnamate-activating fungal NRPS. Expression of a truncated cluster lacking the acetyltransferase gene led to seven additional congeners, including an unexpected family of 2,5-dibenzylpiperazines. These pleiotropic effects highlight the plasticity of the pathway and the power of this approach for accessing novel natural product scaffolds.


Assuntos
Aspergillus/metabolismo , Peptídeo Sintases/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Aspergillus/genética , Cinética , Família Multigênica/genética
15.
Inorg Chem ; 59(16): 11228-11232, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799469

RESUMO

Knowledge of negative thermal expansion (NTE) is an interesting issue in the field of materials science and engineering. It has been proposed that the unique dumbbell pairs of Fe (dumbbells) are highly entangled in the NTE behaviors of R2Fe17 (R = rare earth) compounds but still remain controversial. Here, a facile method is employed to explore the role of dumbbells in spin alignments and NTE by the nonstoichiometric design of Lu2-xFe17 compounds. The powder synchrotron X-ray diffraction, magnetometry, and neutron powder diffraction investigations indicate that a decrease of the Lu content can enhance the dumbbell concentration and motivate an incommensurate magnetic structure simultaneously. However, increasing the dumbbell concentration makes little difference in the amplitude of the ordered magnetic moments of Fe sublattices, which reveals an equivalent NTE behavior for Lu2-xFe17 compounds. This work gives insight into the role that dumbbells played in spin alignments and NTE for Lu2Fe17-based compounds, correcting the previously proposed conjecture and probably conducive to adjusting the related magnetic performances of R2Fe17 compounds in the future.

16.
Inorg Chem ; 59(8): 5247-5251, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32216284

RESUMO

External pressure has been successfully employed to achieve desirable spin alignments in the field of materials science but is seriously restricted by the difficulty of reaching high pressure with conventional methods. The search for simple and effective ways to apply pressure on the lattice is challenging but intriguing. Here we report a new strategy to manipulate the spin alignments of (Y,Lu)1.7Fe17 intermetallic compounds through unusual thermal pressure. The spin alignments of Fe initially lie parallel inside the basal plane and then turn spirally between adjacent layers with a zone axis along the c direction under higher Lu concentration. The synchrotron and neutron powder diffraction investigations clearly reveal that the direction of spin alignments is highly correlated to large lattice contraction induced by negative thermal expansion (NTE), an unusual thermal pressure, along the c direction. The critical lattice parameter c to form spiral spin alignments is determined unambiguously. This work presents a feasible way to adjust spin alignments through NTE, which might be conducive to the future design of particular spin alignments instead of physical pressure for functional magnetic materials.

17.
J Am Chem Soc ; 141(20): 8068-8072, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31045362

RESUMO

Paecilomyces variotii produces the antibacterial and cytotoxic ( M)-viriditoxin (1) together with a trace amount of its atropisomer ( P)-viriditoxin 1'. Elucidation of the biosynthesis by heterologous pathway reconstruction in Aspergillus nidulans identified the multicopper oxidase (MCO) VdtB responsible for the regioselective 6,6'-coupling of semiviriditoxin (10), which yielded 1 and 1' at a ratio of 1:2. We further uncovered that VdtD, an α/ß hydrolase-like protein lacking the catalytic serine, directs the axial chirality of the products. Using recombinant VdtB and VdtD as cell-free extracts from A. nidulans, we demonstrated that VdtD acts like a dirigent protein to control the stereoselectivity of the coupling catalyzed by VdtB to yield 1 and 1' at a ratio of 20:1. Furthermore, we uncovered a unique Baeyer-Villiger monooxygenase (BVMO) VdtE that could transform the alkyl methylketone side chain to methyl ester against the migratory aptitude.


Assuntos
Antibacterianos/biossíntese , Antineoplásicos/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Antibacterianos/química , Antineoplásicos/química , Aspergillus nidulans/genética , Biocatálise , Proteínas Fúngicas/genética , Oxigenases de Função Mista/genética , Naftóis/química , Naftóis/metabolismo , Oxirredução , Paecilomyces/metabolismo , Estereoisomerismo
18.
Chemistry ; 25(66): 15062-15066, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31553484

RESUMO

The aldol reaction is one of the most fundamental stereocontrolled carbon-carbon bond-forming reactions and is mainly catalyzed by aldolases in nature. Despite the fact that the aldol reaction has been widely proposed to be involved in fungal secondary metabolite biosynthesis, a dedicated aldolase that catalyzes stereoselective aldol reactions has only rarely been reported in fungi. Herein, we activated a cryptic polyketide biosynthetic gene cluster that was upregulated in the fungal wheat pathogen Parastagonospora nodorum during plant infection; this resulted in the production of the phytotoxic stemphyloxin II (1). Through heterologous reconstruction of the biosynthetic pathway and in vitro assay by using cell-free lysate from Aspergillus nidulans, we demonstrated that a berberine bridge enzyme (BBE)-like protein SthB catalyzes an intramolecular aldol reaction to establish the bridged tricyclo[6.2.2.02,7 ]dodecane skeleton in the post-assembly tailoring step. The characterization of SthB as an aldolase enriches the catalytic toolbox of classic reactions and the functional diversities of the BBE superfamily of enzymes.


Assuntos
Alcanos/química , Berberina/química , Frutose-Bifosfato Aldolase/metabolismo , Perileno/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Aspergillus nidulans/metabolismo , Biocatálise , Frutose-Bifosfato Aldolase/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Conformação Molecular , Família Multigênica , Perileno/análogos & derivados , Perileno/química , Estereoisomerismo
19.
Inorg Chem ; 58(20): 13742-13745, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31566360

RESUMO

Knowledge of structure-property relationships is fundamental but significant in the exploitation of magnetic materials. Here we report that the high Al substitution for Fe transformed the crystal structure from a hexagonal Ho2Fe17 compound to a rhombohedral Ho2Fe11Al6 compound. Intriguingly, the latter shows unusual evolution of magnetization around 86 and 220 K compared with the former. Integrated investigations of the detailed structure analysis and magnetic performance on the Ho2Fe11Al6 compound demonstrate that the Ho2Fe11Al6 compound possesses a stable rhombohedral structure (R3̅m) from 5 to 430 K with preferred occupation of Al atoms and ferrimagnetic structure in which the magnetic moments of Ho and Fe lie antiparallel in the basal plane below the Curie temperature. The results of the temperature dependence of moments reveal that the disparate rates of change of the moments for Ho and Fe sublattices give rise to unusual evolution of magnetization around 86 and 220 K and then turn to paramagnetic above 280 K. This work provides clear structure and magnetization information on the Ho2Fe11Al6 compound, which may be beneficial to guiding the future development of magnetic materials.

20.
Inorg Chem ; 58(9): 5401-5405, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31017403

RESUMO

Metallic materials that exhibit negligible thermal expansion or zero thermal expansion (ZTE) have great merit for practical applications, but these materials are rare and their thermal expansions are difficult to control. Here, we successfully tailored the thermal expansion behaviors from strongly but abruptly negative to zero over wide temperature ranges in a series of (Gd,R)(Co,Fe)2 (R = Dy, Ho, Er) intermetallic compounds by tuning the composition to bring the first-order magnetic phase transition to second-order. Interestingly, an unusual isotropic ZTE property with a coefficient of thermal expansion of α l = 0.16(0) × 10-6 K-1 was achieved in cubic Gd0.25Dy0.75Co1.93Fe0.07 (GDCF) in the temperature range of 10-275 K. The short-wavelength neutron powder diffraction, synchrotron X-ray diffraction, and magnetic measurement studies evidence that this ZTE behavior was ascribed to the rare-earth-moment-dominated spontaneous volume magnetostriction, which can be controlled by an adjustable magnetic phase transition. The present work extends the scope of the ZTE family and provides an effective approach to exploring ZTE materials, such as by adjusting the magnetism or ferroelectricity-related phase transition in the family of functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA