Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(31): e2308690, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38470201

RESUMO

Traditional surface-enhanced Raman scattering (SERS) sensors rely heavily on the use of plasmonic noble metals, which have limitations due to their high cost and lack of physical and chemical stability. Hence, it is imperative to explore new materials as SERS platforms that can withstand high temperatures and harsh conditions. In this study, the SERS effect of molybdenum boride ceramic powders is presented with an enhancement factor of 5 orders, which is comparable to conventional noble metal substrates. The molybdenum boride powders synthesized through liquid-phase precursor and carbothermal reduction have ß-MoB, MoB2, and Mo2B5 phases. Among these phases, ß-MoB demonstrates the most significant SERS activity, with a detection limit for rhodamine 6G (R6G) molecules of 10-9 m. The impressive SERS enhancement can be attributed to strong molecule interactions and prominent charge interactions between R6G and the various phases of molybdenum boride, as supported by theoretical calculations. Additionally, Raman measurements show that the SERS activity remains intact after exposure to high temperature, strong acids, and alkalis. This research introduces a novel molybdenum boride all-ceramic SERS platform capable of functioning in harsh conditions, thereby showing the promising of boride ultrahigh-temperature ceramics for detection applications in extreme environments.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407274

RESUMO

Plasmon-induced photocatalysis on noble metal surfaces has attracted broad attention due to its application in sunlight energy conversion, while the selectivity of plasmonic platforms remains unclear. Herein, we present the controlled plasmon-mediated oxidation of para-aminothiophenol (p-ATP) by employing Au@Ag core-shell nanostars with tunable tip plasmons in visible-near-infrared range as reactors. In-situ Raman measurements indicate that Au@Ag core-shell nanostars essentially promote the conversion of p-ATP to 4,4'-dimercaptoazobenzene (DMAB) due to hot carriers excited by localized surface plasmon resonance. Au@Ag nanostars with plasmon modes under resonant light excitation suggested higher catalytic efficiency, as evidenced by the larger intensity ratios between 1440 cm-1 (N=N stretching of DMAB) and 1080 cm-1 shifts (C-S stretching of p-ATP). Importantly, the time-dependent surface-enhanced Raman scattering spectra showed that the conversion efficiency of p-ATP was mainly dictated by the resonance condition between the tip plasmon mode of Au@Ag core-shell nanostars and the excitation light, as well as the choice of excitation wavelength. These results show that plasmon bands of metal nanostructures play an important role in the efficiency of plasmon-driven photocatalysis.

3.
Nanoscale Adv ; 4(22): 4730-4738, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381518

RESUMO

The mechanism and application of localized surface plasmon resonance induced photocatalytic reactions remain an issue of interest. In this work, we used Au@Ag core-shell nanorods as a platform for plasmon-driven photocatalysis, which was in situ investigated by surface-enhanced Raman scattering (SERS) spectroscopy. The para-aminothiophenol (PATP) and para-nitrothiophenol (PNTP) adsorbed on the nanorods were irradiated with different excitation wavelengths (633 nm, 785 nm) and transformed into 4,4'-dimercaptoazobenzene (DMAB) as evidenced by the emerging Raman peaks at 1142 cm-1, 1390 cm-1, 1440 cm-1, and 1477 cm-1, corresponding to hot carrier dominated oxidation of PATP and reduction of PNTP. Preliminary azo-reaction kinetics and in situ SERS measurements were conducted by comparing the relative intensity ratio of SERS peaks at 1440 cm-1 (DMAB stretching of N[double bond, length as m-dash]N) and 1080 cm-1 (C-S stretching of PATP and PNTP). These results indicate that the catalytic efficiency was dominated by the excitation wavelength as well as the resonance condition between the plasmon band of the nanorods and the excitation line. As a proof of concept, the Au@Ag core-shell nanorods were used to catalyze 4-nitrophenol molecules, and 4-hydroxyazobenzene molecules as the product were confirmed by in situ SERS spectra as well theoretical predictions, showing potential in plasmon driven catalysis and degradation of organic molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA