Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 67: 396-402, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411701

RESUMO

CRISPR-enabled deaminase base editing has become a powerful tool for precisely editing nucleotides on the chromosome. In this study DNA helicases, such as Escherichia coli DnaB, were fused to activation-induced cytidine deaminase (AID) to form enzyme complexes which randomly introduces edited bases throughout the chromosome. DnaB-AID was found to increase 2.5 × 103 fold relative to the mutagenesis frequency of wildtype. 97.9% of these edits were observed on the leading strand during DNA replication suggesting deamination to be highly coordinated with DNA replication. Using DnaB-AID, a 371.4% increase in ß-carotene production was obtained following four rounds of editing. In Saccharomyces cerevisiae Helicase-AID was constructed by fusing AID to one of the subunits of eukaryotic helicase Mcm2-7 complex, MCM5. Using MCM5-AID, the average editing efficiency of five strains was 2.1 ± 0.4 × 103 fold higher than the native genomic mutation rate. MCM5-AID was able to improve ß-carotene production of S. cerevisiae 4742crt by 75.4% following eight rounds of editing. The S. cerevisiae MCM5-AID technique is the first biological tool for generating and accumulating single base mutations in eukaryotic chromosomes. Since the helicase complex is highly conservative in all eukaryotes, Helicase-AID could be adapted for various applications and research in all eukaryotic cells.


Assuntos
DNA Helicases , Saccharomyces cerevisiae , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Helicases/metabolismo , Genoma , Genômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
BMC Microbiol ; 20(1): 121, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32429840

RESUMO

BACKGROUND: Ralstonia eutropha (syn. Cupriavidus necator) is a model microorganism for studying metabolism of polyhydroxyalkanoates (PHAs) and a potential chassis for protein expression due to various advantages. Although current plasmid systems of R. eutropha provide a basic platform for gene expression, the performance of the expression-inducing systems is still limited. In addition, the sizes of the cloned genes are limited due to the large sizes of the plasmid backbones. RESULTS: In this study, an R. eutropha T7 expression system was established by integrating a T7 RNA polymerase gene driven by the PBAD promoter into the genome of R. eutropha, as well as adding a T7 promoter into a pBBR1-derived plasmid for gene expression. In addition, the essential DNA sequence necessary for pBBR1 plasmid replication was identified, and the redundant parts were deleted reducing the expression plasmid size to 3392 bp, which improved the electroporation efficiency about 4 times. As a result, the highest expression level of RFP was enhanced, and the L-arabinose concentration for expression induction was decreased 20 times. CONCLUSIONS: The R. eutropha T7 expression system provides an efficient platform for protein production and synthetic biology applications.


Assuntos
Proteínas de Bactérias/genética , Cupriavidus necator/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Plasmídeos/genética , Proteínas Virais/genética , Arabinose/metabolismo , Clonagem Molecular , Cupriavidus necator/genética , Eletroporação , Regulação Bacteriana da Expressão Gênica , Engenharia Metabólica , Poli-Hidroxialcanoatos/metabolismo , Regiões Promotoras Genéticas
3.
Microb Cell Fact ; 19(1): 136, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620105

RESUMO

Escherichia coli BL21 is arguably the most popular host for industrial production of proteins, and industrial fermentations are often plagued by phage infections. The CRISPR/Cas system is guided by a gRNA to cleave a specific DNA cassette, which can be developed into a highly efficient programable phage defense system. In this work, we constructed a CRISPR/Cas system targeting multiple positions on the genome of T7 phage and found that the system increased the BL21's defense ability against phage infection. Furthermore, the targeted loci on phage genome played a critical role. For better control of expression of CRISPR/Cas9, various modes were tested, and the OD of the optimized strain BL21(pT7cas9, pT7-3gRNA, prfp) after 4 h of phage infection was significantly improved, reaching 2.0, which was similar to the control culture without phage infection. Although at later time points, the defensive ability of CRISPR/Cas9 systems were not as obvious as that at early time points. The viable cell count of the engineered strain in the presence of phage was only one order of magnitude lower than that of the strain with no infection, which further demonstrated the effectiveness of the CRISPR/Cas9 phage defense system. Finally, the engineered BL21 strain under phage attack expressed RFP protein at about 60% of the un-infected control, which was significantly higher than the parent BL21. In this work, we successfully constructed a programable CRISPR/Cas9 system to increase the ability of E. coli BL21's to defend against phage infection, and created a resistant protein expression host. This work provides a simple and feasible strategy for protecting industrial E. coli strains against phage infection.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Escherichia coli , Bacteriófagos/genética , Escherichia coli/genética , Escherichia coli/virologia , Genoma Viral , Microbiologia Industrial , Microrganismos Geneticamente Modificados/virologia
4.
Nat Biotechnol ; 39(1): 35-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32690970

RESUMO

Current base editors (BEs) catalyze only base transitions (C to T and A to G) and cannot produce base transversions. Here we present BEs that cause C-to-A transversions in Escherichia coli and C-to-G transversions in mammalian cells. These glycosylase base editors (GBEs) consist of a Cas9 nickase, a cytidine deaminase and a uracil-DNA glycosylase (Ung). Ung excises the U base created by the deaminase, forming an apurinic/apyrimidinic (AP) site that initiates the DNA repair process. In E. coli, we used activation-induced cytidine deaminase (AID) to construct AID-nCas9-Ung and found that it converts C to A with an average editing specificity of 93.8% ± 4.8% and editing efficiency of 87.2% ± 6.9%. For use in mammalian cells, we replaced AID with rat APOBEC1 (APOBEC-nCas9-Ung). We tested APOBEC-nCas9-Ung at 30 endogenous sites, and we observed C-to-G conversions with a high editing specificity at the sixth position of the protospacer between 29.7% and 92.2% and an editing efficiency between 5.3% and 53.0%. APOBEC-nCas9-Ung supplements the current adenine and cytidine BEs (ABE and CBE, respectively) and could be used to target G/C disease-causing mutations.


Assuntos
Sistemas CRISPR-Cas/genética , Citosina/metabolismo , DNA Glicosilases , Edição de Genes/métodos , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Adenina/metabolismo , Animais , Pareamento de Bases/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Citidina Desaminase , Reparo do DNA/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Escherichia coli/genética , Guanina/metabolismo , Ratos , Uracila-DNA Glicosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA