Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(21): 4662-4675.e12, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37734372

RESUMO

Bats, rodents, and shrews are the most important animal sources of human infectious diseases. However, the evolution and transmission of viruses among them remain largely unexplored. Through the meta-transcriptomic sequencing of internal organ and fecal samples from 2,443 wild bats, rodents, and shrews sampled from four Chinese habitats, we identified 669 viruses, including 534 novel viruses, thereby greatly expanding the mammalian virome. Our analysis revealed high levels of phylogenetic diversity, identified cross-species virus transmission events, elucidated virus origins, and identified cases of invertebrate viruses in mammalian hosts. Host order and sample size were the most important factors impacting virome composition and patterns of virus spillover. Shrews harbored a high richness of viruses, including many invertebrate-associated viruses with multi-organ distributions, whereas rodents carried viruses with a greater capacity for host jumping. These data highlight the remarkable diversity of mammalian viruses in local habitats and their ability to emerge in new hosts.

2.
Chem Rev ; 123(15): 9497-9564, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37436918

RESUMO

This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.

3.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751381

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Assuntos
Vírus do Mosaico , Viroses , Interferência de RNA , Triticum/genética , Calmodulina/genética , Viroses/genética , Vírus do Mosaico/genética , Doenças das Plantas/genética
4.
Opt Express ; 32(11): 19552-19566, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859088

RESUMO

Besides the scattering structures, the energy transfer (ET) process in the gain medium plays a significant role in the competition between coherent (comprising strongly coherent components) and incoherent (consisting of weakly coherent or "hidden" coherent components) modes of random lasers. In this study, bichromatic emission random lasers were successfully created using polydimethylsiloxane (PDMS) replicas with grooved structures that imitate the inner surface of abalone shells as scattering substrates. The influence mechanism of the ET process from the monomer to dimer in the Rhodamine 640 dye on the competition of random laser modes was thoroughly investigated from both spectral and temporal dimensions. It was confirmed that the ET process can reduce the gain of monomers while amplifying the gain of dimers. By considering the dominant high-efficiency ET processes, an energy transfer factor associated with the pump energy density was determined. Notably, for the first time, it was validated that the statistical distribution characteristics of the time sequence variations in the coherent random laser generated by dimers closely resemble a normal distribution. This finding demonstrates the feasibility of producing high-quality random number sequences.

5.
Phys Chem Chem Phys ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957117

RESUMO

An inverse sandwich structure has been computationally predicted for uranium boride and extended to the series of actinide elements (An) from Th to Cm. The electronic structure and chemical bonding of these novel compounds have been analyzed using density functional theory and multireference wave-function based methods. We report the trends in electronic structure and bonding for An2B8, and found that (d-π)π and (d-p)δ are the most important factors in the stability of An2B8. The (f-p)δ bond provides extra stabilization for Pa2B8 and U2B8, owing to the extensive interactions of An-B8-An, resulting in a short distance for the Pa-Pa and U-U bonds.

6.
J Phys Chem A ; 128(5): 829-839, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38266177

RESUMO

Global-minimum optimizations combined with relativistic quantum chemistry calculations have been performed to characterize the ground-state stable structures of four titled compounds and to analyze the bonding properties. Th2C8 was identified as being a ThC4-Th(C2)2 structure, U2C8 has been found to favor the U-U(C8) structure, and both Th3C8 and U3C8 adopt the (AnC3)2-(AnC2) structure. Then, the wave function analyses reveal that the interactions between the Th 7s-based orbital and the σg molecular orbital of the C2 unit compensate for the excitation energy of 7s16d1 → 6d2 and lead to the stabilization of two Th(IV)s in the ThC4-Th(C2)2 structure. It also reveals that the U species exhibit magnetic exchange coupling behavior in UxC8, for instance, as seen in the direct interaction of U2C8 and the superexchange pathway of U3C8, which effectively stabilizes their low-spin states. This interpretation indicates that the geometric and electronic structures of AnxC8 species are largely influenced by the local magnetic moment and spin correlation.

7.
Appl Opt ; 63(2): 543-548, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38227252

RESUMO

Laser-induced breakdown (LIB) and the competition of other Raman processes are major reasons restricting photon conversion efficiency (PCE) of Raman lasers. In this work, 1064 nm was used as the pump source, and stimulated rotational Raman scattering of hydrogen was investigated. The configuration of zooming out and focusing pump beam was applied, and the dimension of the pump beam at the focus spot increased significantly; consequently, LIB was suppressed, and Raman PCE was improved dramatically. With the help of the Raman gas pressure optimization, vibrational Raman could be fully suppressed, and other competition Raman processes could be well controlled. The optimal PCEs of different rotational Raman lasers could be achieved under different conditions. The maximum PCE of the first rotational Stokes (RS1) was improved to 60.7%, and the maximum energy of RS1 reached 204.5 mJ. With the increment of hydrogen pressure, the maximum PCE of the second rotational Stokes (RS2) was improved to 28.2%, and the maximum energy of RS2 reached 123.9 mJ. Furthermore, a 2.1 µm Raman laser was also generated, the maximum PCE of 2.1 µm reached 44.8%, and its pulse energy reached 106.1 mJ.

8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558245

RESUMO

Semiconductors of narrow bandgaps and high quantum efficiency have not been broadly utilized for photocatalytic coevolution of H2 and O2 via water splitting. One prominent issue is to develop effective protection strategies, which not only mitigate photocorrosion in an aqueous environment but also facilitate charge separation. Achieving local charge separation is especially challenging when these reductive and oxidative sites are placed only nanometers apart compared to two macroscopically separated electrodes in a photoelectrochemical cell. Additionally, the driving force of charge separation, namely the energetic difference in the barrier heights across the two type of sites, is small. Herein, we used conformal coatings attached by nanoscale cocatalysts to transform two classes of tunable bandgap semiconductors, i.e., CdS and GaInP2, into stable and efficient photocatalysts. We used hydrogen evolution and redox-mediator oxidation for model study, and further constructed a two-compartment solar fuel generator that separated stoichiometric H2 and O2 products. Distinct from the single charge-transfer direction reported for conventional protective coatings, the coating herein allows for concurrent injection of photoexcited electrons and holes through the coating. The energetic difference between reductive and oxidative catalytic sites was regulated by selectivity and local kinetics. Accordingly, the charge separation behavior was validated using numerical simulations. Following this design principle, the CdS/TiO2/Rh@CrOx photocatalysts evolved H2 while oxidizing reversible polysulfide redox mediators at a maximum rate of 90.6 µmol⋅h-1⋅cm-2 by stacking three panels. Powered by a solar cell, the redox-mediated solar water-splitting reactor regenerated the polysulfide repeatedly and achieved solar-to-hydrogen efficiency of 1.7%.

9.
Nano Lett ; 23(23): 10696-10702, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38029409

RESUMO

We show using time-dependent density functional theory (TDDFT) that light can be confined into slot waveguide modes residing between individual atomic layers of coinage metals, such as gold. As the top atomic monolayer lifts a few Å off the underlying bulk Au (111), ab initio electronic structure calculations show that for gaps >1.5 Å, visible light squeezes inside the empty slot underneath, giving optical field distributions 2 Å thick, less than the atomic diameter. Paradoxically classical electromagnetic models are also able to reproduce the resulting dispersion for these subatomic slot modes, where light reaches in-plane wavevectors ∼2 nm-1 and slows to <10-2c. We explain the success of these classical dispersion models for gaps ≥1.5 Å due to a quantum-well state forming in the lifted monolayer in the vicinity of the Fermi level. This extreme trapping of light may explain transient "flare" emission from plasmonic cavities where Raman scattering of metal electrons is greatly enhanced when subatomic slot confinement occurs. Such atomic restructuring of Au under illumination is relevant to many fields, from photocatalysis and molecular electronics to plasmonics and quantum optics.

10.
Molecules ; 29(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398589

RESUMO

In this study, 14 structurally novel gefitinib-1,2,3-triazole derivatives were synthesized using a click chemistry approach and characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry (HRMS). Preliminary cell counting kit-8 results showed that most of the compounds exhibit excellent antitumor activity against epidermal growth factor receptor wild-type lung cancer cells NCI-H1299, A549 and NCI-H1437. Among them, 4b and 4c showed the most prominent inhibitory effects. The half maximal inhibitory concentration (IC50) values of 4b were 4.42 ± 0.24 µM (NCI-H1299), 3.94 ± 0.01 µM (A549) and 1.56 ± 0.06 µM (NCI-1437). The IC50 values of 4c were 4.60 ± 0.18 µM (NCI-H1299), 4.00 ± 0.08 µM (A549) and 3.51 ± 0.05 µM (NCI-H1437). Furthermore, our results showed that 4b and 4c could effectively inhibit proliferation, colony formation and cell migration in a concentration-dependent manner, as well as induce apoptosis in H1299 cells. In addition, 4b and 4c exerted its anti-tumor effects by inducing cell apoptosis, upregulating the expression of cleaved-caspase 3 and cleaved-PARP and downregulating the protein levels of Bcl-2. Based on these results, it is suggested that 4b and 4c be developed as potential new drugs for lung cancer treatment.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Gefitinibe/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Apoptose , Triazóis/farmacologia , Triazóis/uso terapêutico , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
11.
Medicina (Kaunas) ; 60(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256380

RESUMO

Background and Objectives: Type 1 diabetes mellitus (T1DM) is a chronic and serious condition that is characterized by inadequate pancreatic-ß-cells' insulin production. The connection between T1DM and Helicobacter pylori infection remains uncertain. This study aimed to conduct a systematic meta-analysis to examine the association between H. pylori infection, hemoglobin A1c levels, and the development of T1DM. Materials and Methods: The initial search identified 451 articles on the association between H. pylori infection and T1DM. Among them, 12 articles had 2797 participants who met the inclusion criteria for an advanced meta-analysis. Results: A significant association was observed between H. pylori infection and T1DM (OR 1.77, 95% CI 1.47-2.12, p < 0.0001), with heterogeneity: Tau2 = 0.47; Chi2 = 57.07, df = 11 (p < 0.0001); I2 = 81%. Subgroup analysis showed that H. pylori infection was significantly associated with a longer duration of T1DM and higher hemoglobin A1c levels (p < 0.001 for both) but not with age at T1DM diagnosis (p = 0.306). Conclusions: These findings contribute to the understanding of the association between H. pylori infection and T1DM and highlight the potential role of H. pylori in influencing the duration and glycemic control of diabetes. Therefore, pediatric patients who have longstanding T1DM and poor glycemic control should be screened for H. pylori infection.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Helicobacter , Helicobacter pylori , Humanos , Criança , Lactente , Diabetes Mellitus Tipo 1/complicações , Infecções por Helicobacter/complicações , Hemoglobinas Glicadas , Controle Glicêmico
12.
Artigo em Inglês | MEDLINE | ID: mdl-38345728

RESUMO

This paper examines how paid and unpaid work affects leisure differently for older women and men in China and India. We use data from the World Health Organization's Study on Global Aging and Health. We find that urban China, with higher levels of public welfare and gender equality, represents the best scenario for older adults' leisure life in developing countries. Although urban Chinese women are disadvantaged relative to urban Chinese men, they still enjoy longer hours of leisure and relaxing leisure than both men and women in rural China, urban India and rural India. Furthermore, the Blinder-Oaxaca decomposition results show gender disparities in unpaid housework to be the primary driver of gender inequalities in leisure in all societies, albeit to varying degrees. These findings highlight the role of public welfare, gender equality, and the gendered consequences of the family support model in shaping older adults' leisure life.

13.
J Am Chem Soc ; 145(11): 6562-6576, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36890641

RESUMO

Organosodium chemistry is underdeveloped compared with organolithium chemistry, and all the reported organosodium complexes exhibit similar, if not identical, reactivity patterns to their lithium counterparts. Herein, we report a rare organosodium monomeric complex, namely, [Na(CH2SiMe3)(Me6Tren)] (1-Na) (Me6Tren: tris[2-(dimethylamino)ethyl]amine) stabilized by a tetra-dentate neutral amine ligand Me6Tren. Employing organo-carbonyl substrates (ketones, aldehydes, amides, ester), we demonstrated that 1-Na features distinct reactivity patterns compared with its lithium counterpart, [Li(CH2SiMe3)(Me6Tren)] (1-Li). Based on this knowledge, we further developed a ligand-catalysis strategy to conduct ketone/aldehyde methylenations, using [NaCH2SiMe3]∞ as the CH2 feedstock, replacing the widely used but hazardous/expensive C═O methylenation methods, such as Wittig, Tebbe, Julia/Julia-Kocienski, Peterson, and so on.

14.
J Am Chem Soc ; 145(28): 15381-15392, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399530

RESUMO

Photocatalytic CO2 reduction (CO2R) in ∼0 mM CO2(aq) concentration is challenging but is relevant for capturing CO2 and achieving a circular carbon economy. Despite recent advances, the interplay between the CO2 catalytic reduction and the oxidative redox processes that are arranged on photocatalyst surfaces with nanometer-scale distances is less studied. Specifically, mechanistic investigation on interdependent processes, including CO2 adsorption, charge separation, long-range chemical transport (∼100 nm distance), and bicarbonate buffer speciation, involved in photocatalysis is urgently needed. Photocatalytic CO2R in ∼0 mM CO2(aq), which has important applications in integrated carbon capture and utilization (CCU), has rarely been studied. Using 0.1 M KHCO3 (aq) of pH 7 but without continuously bubbling CO2, we achieved ∼0.1% solar-to-fuel conversion efficiency for CO production using Ag@CrOx nanoparticles that are supported on a coating-protected GaInP2 photocatalytic panel. CO is produced at ∼100% selectivity with no detectable H2, even with copious protons co-generated nearby. CO2 flux to the Ag@CrOx CO2R sites enhances CO2 adsorption, probed by in situ Raman spectroscopy. CO is produced with local protonation of dissolved inorganic carbon species in a pH as high as 11.5 when using fast electron donors such as ethanol. Isotopic labeling using KH13CO3 was used to confirm the origin of CO from the bicarbonate solution. We then employed COMSOL Multiphysics modeling to simulate the spatial and temporal pH variation and the local concentrations of bicarbonates and CO2(aq). We found that light-driven CO2R and CO2 reactive transport are mutually dependent, which is important for further understanding and manipulating CO2R activity and selectivity. This study enables direct bicarbonate utilization as the source of CO2, thereby achieving CO2 capture and conversion without purifying and feeding gaseous CO2.

15.
Small ; 19(29): e2208174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026668

RESUMO

Ultrathin 2D organic nanosheets (2DONs) with high mobility have received tremendous attention due to thickness of few molecular layers. However, ultrathin 2DONs with high luminescence efficiency and flexibility simultaneously are rarely reported. Here, the ultrathin 2DONs (thickness: 19 nm) through the modulation of tighter molecular packing (distance: ≈3.31 Å) achievable from the incorporation of methoxyl and dipenylamine (DPA) groups into 3D spirofluorenexanthene (SFX) building blocks is successfully prepared. Even with closer molecular stacking, ultrathin 2DONs still enable the suppression of aggregation quenching to exhibit higher quantum yields of blue emission (ΦF  = 48%) than that on amorphous film (ΦF  = 20%), and show amplified spontaneous emission (ASE) with a mediate threshold (332 mW cm-2 ). Further, through drop-casting method, the ultrathin 2DONs are self-organized into large-scale flexible 2DONs films (1.5 × 1.5 cm) with the low hardness (H: 0.008 Gpa) and low Young's modulus (Er : 0.63 Gpa). Impressively, the large-scale 2DONs film can realize electroluminescence performances with a maximum luminance (445 cd m-2 ) and low turn on voltage (3.7 V). These ultrathin 2DONs provide a new avenue for the realization of flexible electrically pumping lasers and intelligent quantum tunneling systems.

16.
Opt Express ; 31(21): 33923-33929, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859161

RESUMO

UV and visible photonics enable applications ranging from spectroscopic sensing to communication and quantum information processing. Photonics structures in these wavelength regimes, however, tend to experience higher loss than their IR counterpart. Particularly in the near-UV band, on-chip optical microresonators have not yet achieved a quality factor beyond 1 million. Here, we report ultra-low-loss photonic waveguides and resonators patterned from alumina thin films prepared by a highly scalable atomic layer deposition process. We demonstrate ultra high Q factor of 1.5×106 at 390 nm, a record value at UV bands, and 1.9×106 at 488.5 nm.

17.
Inorg Chem ; 62(14): 5376-5386, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36990449

RESUMO

In this paper, we have explored the relativistic density functional theory study on a series of deprotonated porphyrinoid (Ln) complexes of uranyl to investigate the geometrical structures and chemical bonding. The ligands bound with uranyl in the 1:1 complexes [UO2(Ln)]x (n = 4, 5, 6; x = 0, -1, -2), showing more thermodynamic stability for "in-cavity" structures of L5 and L6 than that of the "side-on" structure of L4 and an increase in stability with the increase of negative charges, L2- < L3- < L4-. Among the six ligands, the cyclo[6]pyrrole presents the best selectivity toward uranyl. Based on chemical bonding analyses, the U-NL bond in the in-cavity complexes adopts a typical dative NL → U bond with mainly ionic bonding and significant covalency, which comes from the significant orbital interaction of U 5fϕ6dδ7s hybrid AOs and NL 2p-based MOs. This work provides a systematic understanding of the coordination chemistry in uranyl pyrrole-containing macrocycle complexes and the nature of chemical bonding in such systems, which may provide inspirations for the future design of synthetic targets that could be relevant to actinide separations or in the remediation of spent nuclear fuel.

18.
J Phys Chem A ; 127(5): 1233-1243, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36710620

RESUMO

The bonding situation and the oxidation state of plutonium in heterodinuclear plutonium boron group carbonyl compounds XPu(CO)n (X = B, Al, Ga; n = 2 to 4) were investigated by systematically searching their ground-state geometrical structures and by analyzing their electronic structures. We found that the series of XPu(CO)n compounds show various interesting structures with an increment in n as well as a changeover from X = B to Ga. The first ethylene dione (OCCO) compounds of plutonium are found in AlPu(CO)n (n = 2, 3). A direct Ga-Pu single bond is first predicted in the series of GaPu(CO)n, where the bonding pattern represents a class of the Pu → CO π back-bonding system. There is a trend where the Pu-Ga bonding decreases and the Pu-C(O) covalency increases as the Ga oxidation state increases from Ga(0) to Ga(I). Our finding extends the metal → CO covalence back-bonding concept to plutonium systems and also enriches plutonium-containing bonding chemistry.

19.
Acta Pharmacol Sin ; 44(10): 2075-2090, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37344564

RESUMO

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and ß-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFß1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, ß-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and ß-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/ß-catenin signaling pathway.


Assuntos
Receptor de Pregnano X , Insuficiência Renal Crônica , Via de Sinalização Wnt , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Fibrose , Mamíferos/metabolismo , Receptor de Pregnano X/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Rifampina/farmacologia
20.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37115024

RESUMO

Five heavy metals were introduced into the bacterial heavy metal resistance tests. The results showed that apparent inhibition effects of Cd2+ and Cu2+ on the growth of Acidithiobacillus ferrooxidans BYSW1 occurred at high concentrations (>0.04 mol l-1). Significant differences (P < 0.001) were both noticed in the expression of two ferredoxin-encoding genes (fd-I and fd-II) related to heavy metal resistance in the presence of Cd2+ and Cu2+ . When exposed to 0.06 mol l-1 Cd2+, the relative expression levels of fd-I and fd-II were about 11 and 13 times as much as those of the control, respectively. Similarly, exposure to 0.04 mol l-1 Cu2+ caused approximate 8 and 4 times higher than those of the control, respectively. These two genes were cloned and expressed in Escherichia coli, and the structures, functions of two corresponding target proteins, i.e. Ferredoxin-I (Fd-I) and Ferredoxin-II (Fd-II), were predicted. The recombinant cells inserted by fd-I or fd-II were more resistant to Cd2+ and Cu2+ compared with wild-type cells. This study was the first investigation regarding the contribution of fd-I and fd-II to enhancing heavy metal resistance of this bioleaching bacterium, and laid a foundation for further elucidation of heavy metal resistance mechanisms caused by Fd.


Assuntos
Ferredoxinas , Metais Pesados , Ferredoxinas/genética , Metais Pesados/farmacologia , Clonagem Molecular , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA