Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 21(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888437

RESUMO

The prevalence of gout and the adverse effects of current synthetic anti-gout drugs call for new natural and effective xanthine oxidase (XOD) inhibitors to target this disease. Based on our previous finding that an edible seaweed Pterocladiella capillacea extract inhibits XOD, XOD-inhibitory and anti-inflammatory activities were used to evaluate the anti-gout potential of different P. capillacea extract fractions. Through affinity ultrafiltration coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS), feature-based molecular networking (FBMN), and database mining of multiple natural products, the extract's bioactive components were traced and annotated. Through molecular docking and ADMET analysis, the possibility and drug-likeness of the annotated XOD inhibitors were predicted. The results showed that fractions F4, F6, F4-2, and F4-3 exhibited strong XOD inhibition activity, among which F4-3 reached an inhibition ratio of 77.96% ± 4.91% to XOD at a concentration of 0.14 mg/mL. In addition, the P. capillacea extract and fractions also displayed anti-inflammatory activity. Affinity ultrafiltration LC-MS/MS analysis and molecular networking showed that out of the 20 annotated compounds, 8 compounds have been previously directly or indirectly reported from seaweeds, and 4 compounds have been reported to exhibit anti-gout activity. Molecular docking and ADMET showed that six seaweed-derived compounds can dock with the XOD activity pocket and follow the Lipinski drug-like rule. These results support the value of further investigating P. capillacea as part of the development of anti-gout drugs or related functional foods.


Assuntos
Alga Marinha , Xantina Oxidase , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Ultrafiltração/métodos , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios , Bioensaio
2.
Int J Mol Sci ; 16(4): 7707-22, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25853267

RESUMO

Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process.


Assuntos
Celulases/metabolismo , Clorófitas/fisiologia , Lipídeos/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Biocombustíveis , Clorófitas/ultraestrutura , Hidrólise , Microscopia Eletrônica de Transmissão e Varredura , Ultrassom
3.
Front Microbiol ; 14: 1144328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206330

RESUMO

Background: Alkaloids are the second primary class of secondary metabolites (SMs) from marine organisms, most of which have antioxidant, antitumor, antibacterial, anti-inflammatory, and other activities. However, the SMs obtained by traditional isolation strategies have drawbacks such as highly reduplication and weak bioactivity. Therefore, it is significantly important to establish an efficient strategy for screening strains and mining novel compounds. Methods: In this study, we utilized in situ colony assay combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the strain with high potential in alkaloids production. The strain was identified by genetic marker genes and morphological analysis. The secondary metabolites from the strain were isolated by the combine use of vacuum liquid chromatography (VLC), ODS column chromatography, and Sephadex LH-20. Their structures were elucidated by 1D/2D NMR, HR-ESI-MS, and other spectroscopic technologies. Finally, these compounds bioactivity were assay, including anti-inflammatory and anti-ß aggregation. Results: Eighteen marine fungi were preliminarily screened for alkaloids production by in situ colony assay using Dragendorff reagent as dye, and nine of them turned orange, which indicated abundant alkaloids. By thin-layer chromatography (TLC), LC-MS/MS, and multiple approaches assisted Feature-Based Molecular Networking (FBMN) analysis of fermentation extracts, a strain ACD-5 (Penicillium mallochii with GenBank accession number OM368350) from sea cucumber gut was selected for its diverse alkaloids profiles especially azaphilones. In bioassays, the crude extracts of ACD-5 in Czapek-dox broth and brown rice medium showed moderate antioxidant, acetylcholinesterase inhibitory, anti-neuroinflammatory, and anti-ß aggregation activities. Three chlorinated azaphilone alkaloids, compounds 1-3 (sclerotioramine, isochromophilone VI, and isochromophilone IX, respectively), were isolated from the fermentation products of ACD-5 in brown rice medium guided by bioactivities and mass spectrometry analysis. Compound 1 had shown remarkable anti-neuroinflammatory activity in liposaccharide induced BV-2 cells. Conclusion: In summary, in situ colony screening together with LC-MS/MS, multi-approach assisted FBMN can act as an efficient screening method for strains with potential in alkaloids production.

4.
Front Cell Neurosci ; 17: 1163764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937262

RESUMO

Introduction: Macrophages or T-lymphocytes triggered inflammation and, consequently, activated glial cells may contribute to neuroinflammation and neurotransmitter dysfunction in schizophrenia (SZ), while omega(n)-3 polyunsaturated fatty acids (PUFAs) can attenuate some SZ symptoms through anti-inflammatory effects. However, the correlations between macrophage/T-lymphocyte-produced cytokines and glia phenotypes, between inflammatory status and PUFAs composition, between cytokines and neurotransmitter function, and between n-3 PUFAs and neurotransmitter abnormality in SZ are unclear. Methods: Changes in T-helper (h) patterns, peripheral macrophage/glial markers, PUFAs profile, membrane fluidity, and neurotransmitter functions were evaluated in SZ patients (n = 50) and healthy controls (n = 30) using ELISA, gas chromatography, fluorescence anisotropy techniques, and HPLC, respectively. Results: Compared to the control, blood lymphocyte proliferation, the concentration of macrophage/microglia phenotype M1 markers, including cytokines IL-1ß, TNF-α (Th1) and IL-6 (Th2), and astrocyte phenotype A1 marker S100ß was significantly increased, while IL-17 and n-3 PUFAs contents, n-3/n-6 ratio, and membrane fluidity (FLU) were significantly decreased in SZ. Moreover, increased DA and HVA, decreased 5-HT and NE, and their metabolites appeared in SZ. Moreover, negative correlations between IL-6 and A2 marker Brain-Derived Neurotrophic Factor (BDNF) or n-3 PUFAs EPA and between IL-1ß and FLU or 5HIAA, while positive correlations between EPA and 5-HIAA and between FLU and DHA were found in SZ. Discussion: These findings showed (1) no clear Th pattern, but pro-inflammatory-dominant immunity occurred; (2) the pro-inflammatory pattern may result in the activated microglia M1 and astrocyte A1 phenotype; and (3) increased pro-inflammatory cytokines were related to decreased n-3 PUFA and decreased membrane fluidity and dysfunctional neurotransmitter systems in SZ.

5.
Antibiotics (Basel) ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453264

RESUMO

Co-culture is known as an efficient way to explore the metabolic potential of fungal strains for new antibiotics and other therapeutic agents that could counter emerging health issues. To study the effect of co-culture on the secondary metabolites and bioactivities of two marine strains, Aspergillus terreus C23-3 and Aspergillus. unguis DLEP2008001, they were co-cultured in live or inactivated forms successively or simultaneously. The mycelial morphology and high-performance thin layer chromatography (HPTLC) including bioautography of the fermentation extracts were recorded. Furthermore, the agar cup-plate method was used to compare the antimicrobial activity of the extracts. Based on the above, liquid chromatography-photodiode array-tandem mass spectrometry (LC-PDA-MS/MS) together with Global Natural Products Social molecular networking (GNPS) and multiple natural products database mining were used to further analyze their secondary metabolite variations. The comprehensive results showed the following trends: (1) The strain first inoculated will strongly inhibit the growth and metabolism of the latter inoculated one; (2) Autoclaved A. unguis exerted a strong inducing effect on later inoculated A. terreus, while the autoclaved A. terreus showed high stability of its metabolites and still potently suppressed the growth and metabolism of A. unguis; (3) When the two strains are inoculated simultaneously, they both grow and produce metabolites; however, the A. terreus seemed to be more strongly induced by live A. unguis and this inducing effect surpassed that of the autoclaved A. unguis. Under some of the conditions, the extracts showed higher antimicrobial activity than the axenic cultures. Totally, A. unguis was negative in response but potent in stimulating its rival while A. terreus had the opposite effect. Fifteen MS detectable and/or UV active peaks showed different yields in co-cultures vs. the corresponding axenic culture. GNPS analysis assisted by multiple natural products databases mining (PubChem, Dictionary of Natural Products, NPASS, etc.) gave reasonable annotations for some of these peaks, including antimicrobial compounds such as unguisin A, lovastatin, and nidulin. However, some of the peaks were correlated with antagonistic properties and remain as possible novel compounds without mass or UV matching hits from any database. It is intriguing that the two strains both synthesize chemical 'weapons' for antagonism, and that these are upregulated when needed in competitive co-culture environment. At the same time, compounds not useful in this antagonistic setting are downregulated in their expression. Some of the natural products produced during antagonism are unknown chlorinated metabolites and deserve further study for their antimicrobial properties. In summary, this study disclosed the different responses of two Aspergillus strains in co-culture, revealed their metabolic variation, and displayed new opportunities for antibiotic discovery.

6.
Ying Yong Sheng Tai Xue Bao ; 24(3): 713-8, 2013 Mar.
Artigo em Zh | MEDLINE | ID: mdl-23755485

RESUMO

Based on the 2010-2011 experimental data of planting flue-cured tobacco in its representative production counties of Yunnan Province, Southwest China, the models of the tobacco plant physiological development period and growing degree days were established, and validated by the observation data from local agro-meteorological stations. The two models had good performance at pre-transplanting stage, and the errors of the estimated dates were smaller. After transplanting stage, the errors of the estimated dates were larger, because of the disturbances from farming activities such as transplanting and topping. The simulated values based on the tobacco plant physiological development period had a higher coincidence with the observed values, especially at the pretransplanting stage, with the errors of the estimated dates being smaller than two days. As affected by the photoperiod effect, the model of tobacco plant physiological development period fitted better in high latitude regions than in low latitude regions.


Assuntos
Ecossistema , Modelos Biológicos , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia , Simulação por Computador , Previsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA