Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circ Res ; 134(1): 60-80, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38084631

RESUMO

BACKGROUND: Increasing evidence suggests that long noncoding RNAs play significant roles in vascular biology and disease development. One such long noncoding RNA, PSMB8-AS1, has been implicated in the development of tumors. Nevertheless, the precise role of PSMB8-AS1 in cardiovascular diseases, particularly atherosclerosis, has not been thoroughly elucidated. Thus, the primary aim of this investigation is to assess the influence of PSMB8-AS1 on vascular inflammation and the initiation of atherosclerosis. METHODS: We generated PSMB8-AS1 knockin and Apoe (Apolipoprotein E) knockout mice (Apoe-/-PSMB8-AS1KI) and global Apoe and proteasome subunit-ß type-9 (Psmb9) double knockout mice (Apoe-/-Psmb9-/-). To explore the roles of PSMB8-AS1 and Psmb9 in atherosclerosis, we fed the mice with a Western diet for 12 weeks. RESULTS: Long noncoding RNA PSMB8-AS1 is significantly elevated in human atherosclerotic plaques. Strikingly, Apoe-/-PSMB8-AS1KI mice exhibited increased atherosclerosis development, plaque vulnerability, and vascular inflammation compared with Apoe-/- mice. Moreover, the levels of VCAM1 (vascular adhesion molecule 1) and ICAM1 (intracellular adhesion molecule 1) were significantly upregulated in atherosclerotic lesions and serum of Apoe-/-PSMB8-AS1KI mice. Consistently, in vitro gain- and loss-of-function studies demonstrated that PSMB8-AS1 induced monocyte/macrophage adhesion to endothelial cells and increased VCAM1 and ICAM1 levels in a PSMB9-dependent manner. Mechanistic studies revealed that PSMB8-AS1 induced PSMB9 transcription by recruiting the transcription factor NONO (non-POU domain-containing octamer-binding protein) and binding to the PSMB9 promoter. PSMB9 (proteasome subunit-ß type-9) elevated VCAM1 and ICAM1 expression via the upregulation of ZEB1 (zinc finger E-box-binding homeobox 1). Psmb9 deficiency decreased atherosclerotic lesion size, plaque vulnerability, and vascular inflammation in Apoe-/- mice in vivo. Importantly, endothelial overexpression of PSMB8-AS1-increased atherosclerosis and vascular inflammation were attenuated by Psmb9 knockout. CONCLUSIONS: PSMB8-AS1 promotes vascular inflammation and atherosclerosis via the NONO/PSMB9/ZEB1 axis. Our findings support the development of new long noncoding RNA-based strategies to counteract atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Placa Aterosclerótica , RNA Longo não Codificante , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/patologia , Complexo de Endopeptidases do Proteassoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Acta Pharmacol Sin ; 44(1): 71-80, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35778487

RESUMO

Atherosclerosis is a chronic inflammatory disease of arterial wall, and circulating monocyte adhesion to endothelial cells is a crucial step in the pathogenesis of atherosclerosis. Epithelial-stromal interaction 1 (EPSTI1) is a novel gene, which is dramatically induced by epithelial-stromal interaction in human breast cancer. EPSTI1 expression is not only restricted to the breast but also in other normal tissues. In this study we investigated the role of EPSTI1 in monocyte-endothelial cell adhesion and its expression pattern in atherosclerotic plaques. We showed that EPSTI1 was dramatically upregulated in human and mouse atherosclerotic plaques when compared with normal arteries. In addition, the expression of EPSTI1 in endothelial cells of human and mouse atherosclerotic plaques is significantly higher than that of the normal arteries. Furthermore, we demonstrated that EPSTI1 promoted human monocytic THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs) via upregulating VCAM-1 and ICAM-1 expression in HUVECs. Treatment with LPS (100, 500, 1000 ng/mL) induced EPSTI1 expression in HUVECs at both mRNA and protein levels in a dose- and time-dependent manner. Knockdown of EPSTI1 significantly inhibited LPS-induced monocyte-endothelial cell adhesion via downregulation of VCAM-1 and ICAM-1. Moreover, we revealed that LPS induced EPSTI1 expression through p65 nuclear translocation. Thus, we conclude that EPSTI1 promotes THP-1 cell adhesion to endothelial cells by upregulating VCAM-1 and ICAM-1 expression, implying its potential role in the development of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Adesão Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , Monócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Placa Aterosclerótica/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 41(3): 1191-1204, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33406853

RESUMO

OBJECTIVE: Noncoding RNAs are emerging as important players in gene regulation and cardiovascular diseases. Their roles in the pathogenesis of atherosclerosis are not fully understood. The purpose of this study was to determine the role played by a previously uncharacterized long noncoding RNA, RP11-728F11.4, in the development of atherosclerosis and the mechanisms by which it acts. Approach and Results: Expression microarray analysis revealed that atherosclerotic plaques had increased expression of RP11-728F11.4 as well as the cognate gene FXYD6 (FXYD domain containing ion transport regulator 6), which encodes a modulator of Na+/K+-ATPase. In vitro experiments showed that RP11-728F11.4 interacted with the RNA-binding protein EWSR1 (Ewings sarcoma RNA binding protein-1) and upregulated FXYD6 expression. Lentivirus-induced overexpression of RP11-728F11.4 in cultured monocytes-derived macrophages resulted in higher Na+/K+-ATPase activity, intracellular cholesterol accumulation, and increased proinflammatory cytokine production. The effects of RP11-728F11.4 were enhanced by siRNA-mediated knockdown of EWSR1 and reduced by downregulation of FXYD domain containing ion transport regulator 6. In vivo experiments in apoE knockout mice fed a Western diet demonstrated that RP11-728F11.4 increased proinflammatory cytokine production and augmented atherosclerotic lesions. CONCLUSIONS: RP11-728F11.4 promotes atherosclerosis, with an influence on cholesterol homeostasis and proinflammatory molecule production, thus representing a potential therapeutic target. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aterosclerose/genética , RNA Longo não Codificante/genética , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Cultivadas , Colesterol/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , RNA Longo não Codificante/metabolismo , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Regulação para Cima
4.
Biochem Biophys Res Commun ; 533(4): 1204-1211, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33059922

RESUMO

Atherosclerosis is a chronic vascular inflammatory disease that initially starts from an arterial intima lesion and endothelial barrier dysfunction. The purpose of this study was to investigate the role of TM4SF19, a recently identified member of the transmembrane 4L six superfamily, in vascular endothelial cell adherens junctions. We found TM4SF19 expression was significantly increased in atherosclerotic plaques and sera of patients with coronary heart disease (CHD) compared with healthy people by immunohistochemistry and ELISA. In vitro, human umbilical vein endothelial cells (HUVECs) were stimulated by lipopolysaccharides (LPS). TM4SF19 and VE-cadherin expression as well as cell adherens junctions were assessed. Additionally, LPS could upregulate TM4SF19 expression and downregulate VE-cadherin expression in HUVECs in a concentration dependent manner. Overexpression of TM4SF19 substantially aggravated LPS-induced reduction of VE-cadherin expression and attenuation of vascular endothelial cell adherens junctions. However, both the decreased VE-cadherin expression and weakened cell adherens junctions induced by LPS could be dramatically reversed when the expression of TM4SF19 was depressed. This study is the first to reveal the effect of TM4SF19 on endothelial cell adherens junctions. Meanwhile, our results also provide novel therapeutic strategies for atherosclerotic diseases.


Assuntos
Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Aterosclerose/metabolismo , Caderinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Junções Aderentes/efeitos dos fármacos , Antígenos CD/genética , Aterosclerose/sangue , Caderinas/genética , Células Cultivadas , Doença das Coronárias/sangue , Doença das Coronárias/metabolismo , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Placa Aterosclerótica/metabolismo , RNA Mensageiro/metabolismo
5.
Clin Chem Lab Med ; 59(1): 27-38, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32692694

RESUMO

Cell senescence is a fundamental mechanism of aging and appears to play vital roles in the onset and prognosis of cardiovascular disease, fibrotic pulmonary disease, liver disease and tumor. Moreover, an increasing body of evidence shows that cell senescence plays an indispensable role in the formation and development of atherosclerosis. Multiple senescent cell types are associated with atherosclerosis, senescent human vascular endothelial cells participated in atherosclerosis via regulating the level of endothelin-1 (ET-1), nitric oxide (NO), angiotensin II and monocyte chemoattractant protein-1 (MCP-1), senescent human vascular smooth muscle cells-mediated plaque instability and vascular calcification via regulating the expression level of BMP-2, OPN, Runx-2 and inflammatory molecules, and senescent macrophages impaired cholesterol efflux and promoted the development of senescent-related cardiovascular diseases. This review summarizes the characteristics of cell senescence and updates the molecular mechanisms underlying cell senescence. Moreover, we also discuss the recent advances on the molecular mechanisms that can potentially regulate the development and progression of atherosclerosis.


Assuntos
Aterosclerose/etiologia , Senescência Celular/fisiologia , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Macrófagos/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
6.
Med Sci Monit ; 26: e924242, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32788571

RESUMO

BACKGROUND Atherosclerosis is a progressive inflammatory disease that involves a variety of inflammatory and proinflammatory factors, including intercellular adhesion molecule (ICAM)-1. ICAM-1 plays an important role in atherosclerosis by promoting cell adhesion. Mixed lineage kinase domain-like (MLKL), a critical regulator of necroptotic cell death, is indicated to play an important role in atherosclerosis. This study investigated the effects of MLKL on ICAM-1 expression and cell adhesion, thus providing a new direction for the research of atherosclerosis pathogenesis. MATERIAL AND METHODS siRNA-MLKL and pcDNA-MLKL were designed, and the expression of MLKL and ICAM-1 were estimated by real-time polymerase chain reaction at the mRNA level and Western blotting at the protein level. The adhesion of human monocyte cells (THP-1) to human umbilical vein endothelial cells (HUVECs) was examined under immunofluorescence microscopy, and the ability of cell adhesion was evaluated by ImageJ software. RESULTS Overexpression of MLKL greatly enhanced ICAM-1 expression in HUVECs and the adherence of THP-1 cells to HUVECs. Knockdown of MLKL by siRNA dramatically inhibited the expression of ICAM-1 and the adherence of THP-1 cells to HUVECs. MLKL could promote THP-1 adhesion to HUVECs by activating ICAM-1 expression in HUVECs. CONCLUSIONS MLKL can promote THP-1 cell adhesion to HUVECs through up-regulation of ICAM-1 expression in HUVECs. Thus, MLKL might be a useful target for reducing adhesion of monocytes to endothelial cells and atherosclerosis.


Assuntos
Adesão Celular/fisiologia , Endotélio Vascular/citologia , Molécula 1 de Adesão Intercelular/fisiologia , Monócitos/citologia , Proteínas Quinases/fisiologia , Regulação para Cima/fisiologia , Regulação para Baixo/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Proteínas Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real
7.
Physiol Genomics ; 51(12): 644-656, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682178

RESUMO

Long noncoding (lnc)RNAs have been implicated in the development and progression of atherosclerosis. However, the expression and mechanism of action of lncRNAs in atherosclerosis are still unclear. We implemented microarray analysis in human advanced atherosclerotic plaques and normal arterial intimae to detect the lncRNA and mRNA expression profile. Gene Ontology functional enrichment and pathway analyses were applied to explore the potential functions and pathways involved in the pathogenesis of atherosclerosis. A total of 236 lncRNAs and 488 mRNAs were selected for further Ingenuity Pathway Analysis. Moreover, quantitative RT-PCR tests of most selected lncRNAs and mRNAs with high fold changes were consistent with the microarray data. We also performed ELISA to investigate the corresponding proteins levels of selected genes and showed that serum levels of SPP1, CD36, ATP6V0D2, CHI3L1, MYH11, and BDNF were differentially expressed in patients with coronary heart disease compared with healthy subjects. These proteins correlated with some biochemical parameters used in the diagnosis of cardiovascular diseases. Furthermore, receiver operating characteristic analysis showed a favorable diagnostic performance. The microarray profiling analysis and validation of differentially-expressed lncRNAs and mRNAs in atherosclerosis not only provide new insights into the pathogenesis of this disease but may also reveal new biomarkers for its diagnosis and treatment.


Assuntos
Aterosclerose/sangue , Aterosclerose/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , RNA Mensageiro/sangue , RNA Mensageiro/genética , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Voluntários Saudáveis , Humanos , Masculino , Placa Aterosclerótica/química , Reação em Cadeia da Polimerase em Tempo Real , Túnica Íntima/química
8.
J Cell Biochem ; 120(8): 13775-13782, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938872

RESUMO

Atherosclerosis is a complex inflammatory disease that involves disrupted cellular cholesterol levels and formation of foam cells. Studies about long noncoding RNA (lncRNA) have revealed its function in the development of atherosclerosis, by mediating reverse cholesterol transport and formation of foam cells. In this study, we found that oxidized low-density lipoprotein (ox-LDL) markedly decreased lncRNA AC096664.3 in vascular smooth muscle cells (VSMCs) and THP-1 macrophages. We also found that ox-LDL reduced ATP-binding cassette (ABC) G1 through inhibiting lncRNA AC096664.3 in VSMCs. Further experiments showed that the downregulation of lncRNA AC096664.3 reduced ABCG1 expression through inhibiting the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and that ox-LDL reduced ABCG1 expression through inhibiting the expression of PPAR-γ. Furthermore, we discovered that ox-LDL inhibited ABCG1 via the lncRNA AC096664.3/PPAR-γ/ABCG1 pathway, which led to an increase in total and free cholesterol in VMSCs. Thus, we confirmed that ox-LDL induces cholesterol accumulation via the lncRNA AC096664.3/PPAR-γ/ABCG1 pathway in VSMCs, indicating a promising novel therapy in protecting against atherosclerosis.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Homeostase , PPAR gama/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/genética , Humanos , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/genética , RNA Longo não Codificante/genética , Células THP-1
9.
J Cell Mol Med ; 22(1): 497-510, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922548

RESUMO

Current glioma therapies allow in situ delivery of cytotoxic drugs to the tumour; however, gliomas show early recurrence due to their highly proliferative character. Long non-coding (lnc)RNAs play critical roles in tumorigenesis by controlling cell proliferation and cycling. However, the mechanism of action of lncRNAs in glioma development remains unclear. Here, we report that the lncRNA PLAC2 induces cell cycle arrest by targeting ribosomal protein (RP)L36 in glioma. RPL36 promoted cell proliferation and G1/S cell cycle progression. Mass spectrometry analysis revealed that signal transducer and activator of transcription (STAT)1 interacted with both lncRNA PLAC2 and the RPL36 promoter. We also found that the nucleus PLAC2 bind with STAT1 and interact with RPL36 promoters but the cytoplasmic lncRNA PLAC2 inhibited STAT1 nuclear transfer, thereby decreasing RP36 expression, inhibiting cell proliferation and inducing cell cycle arrest. These results provide evidence for a novel cell cycle regulatory network in glioma comprising the lncRNA PLAC2 along with STAT1 and RPL36 that can serve as a therapeutic target for glioma treatment.


Assuntos
Ciclo Celular/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , RNA Longo não Codificante/genética , Proteínas Ribossômicas/genética , Fator de Transcrição STAT1/metabolismo , Adulto , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Fase G1/genética , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , RNA Longo não Codificante/metabolismo , Proteínas Ribossômicas/metabolismo , Fase S/genética
10.
Mol Cancer ; 17(1): 93, 2018 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-29803224

RESUMO

BACKGROUND: Dysfunctions of long non-coding RNA (lncRNAs) have been associated with the initiation and progression of hepatocellular carcinoma (HCC), but the clinicopathologic significance and potential role of lncRNA PTTG3P (pituitary tumor-transforming 3, pseudogene) in HCC remains largely unknown. METHODS: We compared the expression profiles of lncRNAs in 3 HCC tumor tissues and adjacent non-tumor tissues by microarrays. In situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to assess the level of PTTG3P and prognostic values of PTTG3P were assayed in two HCC cohorts (n = 46 and 90). Artificial modulation of PTTG3P (down- and over-expression) was performed to explore the role of PTTG3P in tumor growth and metastasis in vitro and in vivo. Involvement of PTTG1 (pituitary tumor-transforming 1), PI3K/AKT signaling and its downstream signals were validated by qRT-PCR and western blot. RESULTS: We found that PTTG3P was frequently up-regulated in HCC and its level was positively correlated to tumor size, TNM stage and poor survival of patients with HCC. Enforced expression of PTTG3P significantly promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, PTTG3P knockdown had opposite effects. Mechanistically, over-expression of PTTG3P up-regulated PTTG1, activated PI3K/AKT signaling and its downstream signals including cell cycle progression, cell apoptosis and epithelial-mesenchymal transition (EMT)-associated genes. CONCLUSIONS: Our findings suggest that PTTG3P, a valuable marker of HCC prognosis, promotes tumor growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in HCC and might represent a potential target for gene-based therapy.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Securina/genética , Regulação para Cima , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Análise de Sobrevida
11.
Immunol Cell Biol ; 96(2): 175-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29363163

RESUMO

Atherosclerotic cardiovascular disease is considered as the leading cause of mortality and morbidity worldwide. Accumulating evidence supports an important role for long noncoding RNA (lncRNA) in the pathogenesis of atherosclerosis. Nevertheless, the role of lncRNA in atherosclerosis-associated vascular dysfunction and the underlying mechanism remain elusive. Here, using microarray analysis, we identified a novel lncRNA RP11-714G18.1 with significant reduced expression in human advanced atherosclerotic plaque tissues. We demonstrated in both human vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) that RP11-714G18.1 impaired cell migration, reduced the adhesion of ECs to monocytes, suppressed the neoangiogenesis, decreased apoptosis of VSMCs and promoted nitric oxide production. Mechanistically, RP11-714G18.1 could directly bind to its nearby gene LRP2BP and increased the expression of LRP2BP. Moreover, we showed that RP11-714G18.1 impaired cell migration through LRP2BP-mediated downregulation of matrix metalloproteinase (MMP)1 in both ECs and VSMCs. In atherosclerotic patients, the serum levels of LRP2BP were positively correlated with high-density lipoprotein cholesterol, but negatively correlated with cardiac troponin I. Our study suggests that RP11-714G18.1 may play an athero-protective role by inhibiting vascular cell migration via RP11-714G18.1/LRP2BP/MMP1 signaling pathway, and targeting the pathway may provide new therapeutic approaches for atherosclerosis.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Sequência de Bases , Proteínas de Transporte/sangue , Proteínas de Transporte/genética , Adesão Celular/genética , Ciclo Celular/genética , Movimento Celular/genética , HDL-Colesterol/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica , Óxido Nítrico/biossíntese , Fases de Leitura Aberta/genética , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , RNA Longo não Codificante/genética , Troponina I/metabolismo
12.
Microb Pathog ; 121: 45-50, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29763724

RESUMO

Group B Streptococcus (GBS) colonizes the gastrointestinal and urogenital tracts of approximately 30% of women, and it can cause sepsis and meningitis in neonates. GBS has been shown to form biofilms in vitro, but the effects of environmental and genotypic factors upon GBS biofilm formation are unclear. The aim of the present study was to optimize culture conditions for enhanced GBS biofilm production. Furthermore, this study also investigated the influences of strain lineage, pilus profile, and isolation source on GBS biofilm formation. The results demonstrate that the fed-batch mode and acidic pH strongly enhanced GBS biofilm formation in vitro. These findings suggest that the fed-batch mode may be suitable for both screening and fundamental studies of GBS biofilm formation. Moreover, this study demonstrated a correlation between the hyper virulent clonal complex 17 and a strong biofilm phenotype.


Assuntos
Biofilmes/crescimento & desenvolvimento , Streptococcus agalactiae/genética , Técnicas de Cultura Celular por Lotes , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Genótipo , Concentração de Íons de Hidrogênio , Modelos Logísticos , Fenótipo , Streptococcus agalactiae/crescimento & desenvolvimento
13.
J Lipid Res ; 57(8): 1398-411, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27281478

RESUMO

Accumulated evidence shows that vanin-1 (VNN1) plays a key part in glucose metabolism. We explored the effect of VNN1 on cholesterol metabolism, inflammation, apoptosis in vitro, and progression of atherosclerotic plaques in apoE(-/-) mice. Oxidized LDL (Ox-LDL) significantly induced VNN1 expression through an ERK1/2/cyclooxygenase-2/PPARα signaling pathway. VNN1 significantly increased cellular cholesterol content and decreased apoAI and HDL-cholesterol (HDL-C)-mediated efflux by 25.16% and 23.13%, respectively, in THP-1 macrophage-derived foam cells (P < 0.05). In addition, VNN1 attenuated Ox-LDL-induced apoptosis through upregulation of expression of p53 by 59.15% and downregulation of expression of B-cell lymphoma-2 127.13% in THP-1 macrophage (P < 0.05). In vivo, apoE(-/-) mice were divided randomly into two groups and transduced with lentivirus (LV)-Mock or LV-VNN1 for 12 weeks. VNN1-treated mice showed increased liver lipid content and plasma levels of TG (124.48%), LDL-cholesterol (119.64%), TNF-α (148.74%), interleukin (IL)-1ß (131.81%), and IL-6 (156.51%), whereas plasma levels of HDL-C (25.75%) were decreased significantly (P < 0.05). Consistent with these data, development of atherosclerotic lesions was increased significantly upon infection of apoE(-/-) mice with LV-VNN1. These observations suggest that VNN1 may be a promising therapeutic candidate against atherosclerosis.


Assuntos
Amidoidrolases/fisiologia , Aterosclerose/enzimologia , Dieta Hiperlipídica/efeitos adversos , Animais , Apolipoproteínas E/genética , Apoptose , Aterosclerose/etiologia , Células CACO-2 , Ésteres do Colesterol/metabolismo , Proteínas Ligadas por GPI/fisiologia , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Metabolismo dos Lipídeos , Lipoproteínas LDL/fisiologia , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Macrófagos/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
14.
Antimicrob Agents Chemother ; 60(10): 6362-4, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27431225

RESUMO

Klebsiella pneumoniae strain KP01 carrying blaGES-5 was identified from a patient in Guangzhou, China. High-throughput sequencing assigned blaGES-5 to a 28.5-kb nonconjugative plasmid, pGES-GZ. A 13-kb plasmid backbone sequence on pGES-GZ was found to share high sequence identities with plasmids from Gram-negative nonfermenters. A novel class 1 integron carrying a gene cassette array of orf28-orf28-blaGES-5 was identified on pGES-GZ, within which orf28 encoded a hypothetical protein possibly correlated to fosfomycin resistance.


Assuntos
Proteínas de Bactérias/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Idoso , China , Infecções Comunitárias Adquiridas/microbiologia , Farmacorresistência Bacteriana/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Integrons , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/isolamento & purificação , Masculino , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Pneumonia Bacteriana/microbiologia
15.
Arch Biochem Biophys ; 590: 64-71, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26603571

RESUMO

BACKGROUND: Increasing evidence has shown that gene beta-lactamases (LACTB) has effect on obesity. Recent studies demonstrate that miR-125b-5p is a potential small molecular target to prevent atherosclerosis obliterans which may be inflammation-associated. However, the mechanism underlying miR-125b-5p on arteriosclerosis development, the association between miR-125b-5p and LACTB is still unknown. METHODS AND RESULTS: In this study, we found that miR-125b-5p was down-regulated while LACTB was up-regulated in atherosclerotic plaques. Our results showed that LACTB was a potential target of miR-125b-5p based on bioinformatics analyses and dual-luciferase reporter assays. Moreover, miR-125b-5p directly inhibited LACTB protein and mRNA expression by targeting LACTB 3'UTR. Meanwhile, the expression of monocyte chemotactic protein-1 (MCP-1) was decreased by miR-125b-5p mimics treatment in THP-1 macrophages. We also demonstrated that the level of MCP-1 was markedly increased when transfected with LACTB. In addition, the upregulation of MCP-1 expression through miR-125b-5p inhibitors was attenuate by siRNA-LACTB treatment in LPS-stimulated THP-1 macrophages. CONCLUSIONS: MiR-125b-5p attenuates the secretion of MCP-1 by directly targeting inhibiting LACTB in LPS-stimulated THP-1 macrophages.


Assuntos
Aterosclerose/metabolismo , Quimiocina CCL2/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , beta-Lactamases/metabolismo , Adulto , Linhagem Celular , Feminino , Humanos , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Proteínas de Membrana/farmacologia , Pessoa de Meia-Idade , Proteínas Mitocondriais/farmacologia , beta-Lactamases/farmacologia
16.
Arch Biochem Biophys ; 604: 27-35, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27267730

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease and represents the leading cause of morbidity and mortality throughout the world. Accumulating evidences have showed that Dihydrocapsaicin (DHC) has been found to exert multiple pharmacological and physiological effects. Nevertheless, the effects and possible mechanism of DHC on proinflammatory response remain largely unexplained. METHODS AND RESULTS: We found that DHC markedly upregulated NFIA and suppressed NF-κB expression in THP-1 macrophages. Up-regulation of proinflammatory cytokines induced by LPS including TNF-α, IL-1ß and IL-6 were markedly suppressed by DHC treatment. We also observed that protein level of NFIA was significantly increased while NF-κB and proinflammatory cytokines were decreased by DHC treatment in apoE(-/-) mice. Lentivirus-mediated overexpression of NFIA suppressed NF-κB and proinflammatory cytokines expression both in THP-1 macrophages and plaque tissues of apoE-/- mice. Moreover, treatment with lentivirus-mediated overexpression of NFIA made the down-regulation of DHC on NF-κB and proinflammatory cytokines expression notably accentuated in THP-1 macrophages and apoE(-/-) mice. In addition, treatment with siRNA targeting NF-κB accentuated the suppression of proinflammatory cytokines by lentivirus-mediated overexpression of NFIA. CONCLUSION: These observations demonstrated that DHC can significantly decrease proinflammatory cytokines through enhancing NFIA and inhibiting NF-κB expression and thus DHC may be a promising candidate as an anti-inflammatory drug for atherosclerosis as well as other disorders.


Assuntos
Capsaicina/análogos & derivados , Citocinas/metabolismo , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Fatores de Transcrição NFI/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/química , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Capsaicina/química , Perfilação da Expressão Gênica , Humanos , Inflamação , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , RNA Interferente Pequeno/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 35(1): 87-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25265644

RESUMO

OBJECTIVE: Cardiovascular disease caused by atherosclerosis is the number one cause of death in Western countries and threatens to become the major cause of morbidity and mortality worldwide. Long noncoding RNAs are emerging as new players in gene regulation, but how long noncoding RNAs operate in the development of atherosclerosis remains unclear. APPROACH AND RESULTS: Using microarray analysis, we found that long noncoding RNA RP5-833A20.1 expression was upregulated, whereas nuclear factor IA (NFIA) expression was downregulated in human acute monocytic leukemia macrophage-derived foam cells. Moreover, we showed that long noncoding RNA RP5-833A20.1 may decreases NFIA expression by inducing hsa-miR-382-5p expression in vitro. We found that the RP5-833A20.1/hsa-miR-382-5p/NFIA pathway is essential to the regulation of cholesterol homeostasis and inflammatory responses in human acute monocytic leukemia macrophages. Lentivirus-mediated NFIA overexpression increased high-density lipoprotein cholesterol circulation, reduced low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol circulation, decreased circulation of inflammatory cytokines, including interleukin-1ß, interleukin-6, tumor necrosis factor-α, and C-reactive protein, enhanced reverse cholesterol transport, and promoted regression of atherosclerosis in apolipoprotein E-deficient mice. CONCLUSIONS: Our findings indicated that the RP5-833A20.1/miR-382-5p/NFIA pathway was essential to the regulation of cholesterol homeostasis and inflammatory reactions and suggested that NFIA may represent a therapeutic target to ameliorate cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Inflamação/imunologia , MicroRNAs/metabolismo , Fatores de Transcrição NFI/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Células CACO-2 , Colesterol/sangue , Citocinas/sangue , Modelos Animais de Doenças , Células Espumosas/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Técnicas de Transferência de Genes , Vetores Genéticos , Células Hep G2 , Homeostase , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Mediadores da Inflamação/sangue , Lentivirus/genética , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fatores de Transcrição NFI/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Longo não Codificante/genética , Receptor Tipo 1 de Angiotensina , Fatores de Tempo , Transfecção
18.
Hepatol Res ; 46(8): 804-15, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26583881

RESUMO

AIM: miR-548p is a recently identified and poorly characterized miRNA. However, its role of miR-548p in tumorigenesis and progression remains poorly understood. Here, we aimed to investigate the biofunction of miR-548p in hepatocellular carcinogenesis. METHODS: The expression levels of miR-548p were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The role of miR-548p in hepatocellular carcinoma (HCC) was determined by colony formation, flow cytometry assay and nude mice xenograft experiments. miR-548p target genes were analyzed by miRNA target predication programs and verified by qRT-PCR, western blotting assay and dual-luciferase reporter assay. RESULTS: miR-548p is repressed by hepatitis B virus X protein (HBx) in HCC tumor tissues and hepatoma cells, and inhibited cell growth by inhibiting cell proliferation and promoting cell apoptosis. miR-548p directly downregulated the expression of hepatitis B x-interacting protein (HBXIP) by binding to the 3'-untranslated region of HBXIP mRNA. Further study showed that hepatocyte nuclear factor-4a (HNF4A) promoted the expression of miR-548p and inhibited the transcription of HBXIP. HNF4A is a dominant transcriptional regulator of hepatocyte differentiation and hepatocellular carcinogenesis, and is shown to be repressed by HBx. CONCLUSION: We proposed the model for HBx/HNF4A/miR-548p/HBXIP pathway that controls hepatoma cell growth and tumorigenesis of HCC. miR-548p was identified as a tumor-suppressor in HBx-associated hepatocellular carcinogenesis.

19.
Apoptosis ; 20(10): 1321-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201458

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with an increasing incidence worldwide. Apolipoprotein M (apoM) is a novel apolipoprotein that is mainly expressed in liver and kidney tissues. However, the anti-tumor properties of apoM remain largely unknown. We evaluated the anti-tumor activities and mechanisms of apoM in HCC both in vivo and in vitro. Bioinformatic analysis and luciferase reporter assay results showed that apoM was a potential target of hsa-miR-573 and was downregulated after transfection with hsa-miR-573 mimics. Overexpression of apoM suppressed migration, invasion, and proliferation of hepatoma cells in vitro. Overexpression of hsa-miR-573 in hepatoma cells reduced apoM expression, leading to promotion of the invasion, migration, and proliferation of hepatoma cells in vitro. In addition, hsa-miR-573 markedly promoted growth of xenograft tumors in nude mice with an accompanying reduction in cell apoptosis. ApoM markedly inhibited growth of xenograft tumors in nude mice and promoted cell apoptosis. Moreover, Bcl2A1 mRNA and protein levels were inhibited by apoM overexpression and an increase in apoptosis rate by apoM was markedly compensated by Bcl2A1 overexpression in HepG2 cells. These results provide evidence that hsa-miR-573 promoted tumor growth by inhibition of hepatocyte apoptosis and this pro-tumor effect might be mediated through Bcl2A1 in an apoM-dependent manner. Therefore, our findings may be useful to improve understanding of the critical effects of hsa-miR-573 and apoM in HCC pathogenesis.


Assuntos
Apoptose , Carcinogênese/metabolismo , Hepatócitos/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas M , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Hepatócitos/patologia , Xenoenxertos , Humanos , Lipocalinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Antígenos de Histocompatibilidade Menor , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
20.
J Lipid Res ; 55(4): 681-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24493833

RESUMO

Accumulated evidence shows that G protein-coupled receptor 119 (GPR119) plays a key role in glucose and lipid metabolism. Here, we explored the effect of GPR119 on cholesterol metabolism and inflammation in THP-1 macrophages and atherosclerotic plaque progression in apoE(-/-) mice. We found that oxidized LDL (Ox-LDL) significantly induced long intervening noncoding RNA (lincRNA)-DYNLRB2-2 expression, resulting in the upregulation of GPR119 and ABCA1 expression through the glucagon-like peptide 1 receptor signaling pathway. GPR119 significantly decreased cellular cholesterol content and increased apoA-I-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. In vivo, apoE(-/-) mice were randomly divided into two groups and infected with lentivirus (LV)-Mock or LV-GPR119 for 8 weeks. GPR119-treated mice showed decreased liver lipid content and plasma TG, interleukin (IL)-1ß, IL-6, and TNF-α levels, whereas plasma levels of apoA-I were significantly increased. Consistent with this, atherosclerotic lesion development was significantly inhibited by infection of apoE(-/-) mice with LV-GPR119. Our findings clearly indicate that, Ox-LDL significantly induced lincRNA-DYNLRB2-2 expression, which promoted ABCA1-mediated cholesterol efflux and inhibited inflammation through GPR119 in THP-1 macrophage-derived foam cells. Moreover, GPR119 decreased lipid and serum inflammatory cytokine levels, decreasing atherosclerosis in apoE(-/-) mice. These suggest that GPR119 may be a promising candidate as a therapeutic agent.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , RNA Longo não Codificante/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagon/metabolismo , Transdução de Sinais , Animais , Aterosclerose/sangue , Linhagem Celular , Citocinas/sangue , Células Espumosas/imunologia , Células Espumosas/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Homeostase , Humanos , Mediadores da Inflamação/sangue , Metabolismo dos Lipídeos , Lipídeos/sangue , Lipopolissacarídeos/farmacologia , Lipoproteínas LDL/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Longo não Codificante/metabolismo , Receptores Acoplados a Proteínas G/genética , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA