Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 179: 156598, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583255

RESUMO

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.


Assuntos
Aloenxertos , Rejeição de Enxerto , Transplante de Coração , Interleucina-1 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes , Animais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Humanos , Camundongos , Proteínas Recombinantes/farmacologia , Interleucina-1/metabolismo , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Masculino , Serina-Treonina Quinases TOR/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Appl Microbiol Biotechnol ; 107(11): 3779-3788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099055

RESUMO

The p30 protein is abundantly expressed in the early stage of African swine fever virus (ASFV) infection. Thus, it is an ideal antigen candidate for serodiagnosis with the use of an immunoassay. In this study, a chemiluminescent magnetic microparticle immunoassay (CMIA) was developed for the detection of antibodies (Abs) against ASFV p30 protein in porcine serum. Purified p30 protein was coupled to magnetic beads, and the experimental conditions including concentration, temperature, incubation time, dilution ratio, buffers, and other relevant variables were evaluated and optimized. To evaluate the performance of the assay, a total of 178 pig serum samples (117 negative and 61 positive samples) were tested. According to receiver operator characteristic curve analysis, the cut-off value of the CMIA was 104,315 (area under the curve, 0.998; Youden's index, 0.974; 95% confidence interval: 99.45 to 100%). Sensitivity results showed that the dilution ratio of p30 Abs in ASFV-positive sera detected by the CMIA is much higher when compared to commercial blocking ELISA kit. Specificity testing showed that no cross-reactivity was observed with sera positive for other porcine disease viruses. The intraassay coefficient of variation (CV) was < 5%, and the interassay CV was < 10%. The p30-magnetic beads could be stored at 4 °C for more than 15 months without loss of activity. The kappa coefficient between CMIA and INGENASA blocking ELISA kit was 0.946, showing strong agreement. In conclusion, our method showed superiority with high sensitivity, specificity, reproducibility, and stability and potentialized its application in the development of a diagnostic kit for the detection of ASF in clinical samples. KEY POINTS: • ASFV tag-free p30 was successfully purified. • High sensitivity, specificity, relatively simple, and time-saving to detect antibody against ASFV were developed. • The development of CMIA will help the clinical diagnosis of ASFV and will be useful for large-scale serological test.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Reprodutibilidade dos Testes , Febre Suína Africana/diagnóstico , Imunoensaio/métodos , Anticorpos Antivirais , Fenômenos Magnéticos
3.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029354

RESUMO

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Assuntos
Deltacoronavirus , Animais , China , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Deltacoronavirus/patogenicidade , Diarreia/veterinária , Genômica , Filogenia , Suínos , Doenças dos Suínos/virologia , Virulência
4.
Biomed Chromatogr ; 36(6): e5362, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35393691

RESUMO

Chicken colibacillosis is one of the most severe diseases in the poultry industry. Ceftiofur sodium (CS) is often used to treat it in clinical practice and lipopolysaccharide (LPS) accumulates in the chicken's body. Previous experimental studies found that CS combined with LPS could induce liver injury in layer chickens, and polysaccharides from charred Angelica sinensis(CASP) had a better hepatoprotective effect than polysaccharides from unprocessed Angelica sinensis(UASP). However, the intervention mechanism was unclear. Thus, UPLC-Q/TOF-MS/MS-based metabonomics and transcriptomics were used in this study to clarify the hepatoprotective effect mechanism of CASP and UASP in layer chickens. Transcriptomics and enzyme-linked immunosorbent assay were used for biological verification of some critical mutual metabolic pathways screened with metabonomics. The comprehensive analysis results showed that in a layer chicken liver injury model built with LPS and CS, 12 critical metabolic pathways were disturbed, involving 10 important differential metabolites. The hepatoprotective effect mechanism of CASP is related to the arachidonic acid metabolism and mTOR signaling pathways, involving nine important differential metabolites. In contrast, the hepatoprotective effect mechanism of UASP is related to the arachidonic acid metabolism pathway, involving six important differential metabolites.


Assuntos
Angelica sinensis , Animais , Ácido Araquidônico , Galinhas , Lipopolissacarídeos , Metabolômica/métodos , Polissacarídeos/farmacologia , Espectrometria de Massas em Tandem
5.
Zhongguo Zhong Yao Za Zhi ; 47(18): 4978-4986, 2022 Sep.
Artigo em Zh | MEDLINE | ID: mdl-36164908

RESUMO

This study aims to explore the mechanism of Tianhe Zhuifeng Ointment in treating rheumatoid arthritis(RA) with syndrome of internal obstruction and cold-dampness and the compatibility characteristics based on the "disease-syndrome-formula" association network. A gene set associated with the clinical symptoms of RA was collected from Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine v2.0(TCMIP v2.0). The different expression gene set of RA with syndrome of internal obstruction and cold-dampness was screened out by transcriptomic expression profile detection and bioinformatics data mining of the comparison of RA patients with syndrome of internal obstruction and cold-dampness and healthy volunteers. The chemical composition information of 35 Chinese medicines from Tianhe Zhuifeng Ointment was collected from TCMIP v2.0 and Traditional Chinese Medicine Bank(TCMBank). The candidate targets were predicted based on the similarity principle of compounds structure. The interactive network of "related gene of RA with syndrome of internal obstruction and cold-dampness-candidate target of Tianhe Zhuifeng Ointment" was constructed. The core network targets were screened out by topological characteristics of calculating network, and the functional exploration was carried out based on Kyoto Encyclopedia of Genes and Genomes(KEGG) and Reactome Pathway Database. The compatibility mechanisms of various efficacy groups of Tianhe Zhuifeng Ointment were further explored. The results showed that the candidate targets of Tianhe Zhuifeng Ointment were mainly involved into the modules of "immune-inflammation" regulation, nervous system function, cell function, and substance and energy metabolism, etc. The mechanisms of various efficacy groups emphasized on different aspects. The group of dispelling wind and removing dampness-dredging channels and activating collaterals, the group of extinguishing wind and stopping convulsions, and the group of pungent analgesia regulated "immune-inflammation" system by warming meridians and dissipating cold. The group of activating blood and resolving stasis and the group of strengthening sinews and bones regulated "immune-inflammation" system by activating blood and dredging channels. The group of dispelling wind and removing dampness-dredging channels and activating collaterals, the group of extinguishing wind and stopping convulsions, the group of activating blood and resolving stasis, the group of strengthening sinews and bones, and the group of clearing heat and draining water affected the nervous system by invigorating Qi-blood and benefiting spirit. The group of dispelling wind and removing dampness-dredging channels and activating collaterals and the group of extinguishing wind and stopping convulsions regulated cell function and substance and energy metabolism by dispelling wind and eliminating cold-dampness. The group of activating blood and resolving stasis and the group of strengthening sinews and bones regulated the cell function and substance and energy metabolism by activating blood and strengthening sinews and bones. The results showed that Tianhe Zhuifeng Ointment exerted the comprehensive efficacy of dispelling wind, removing dampness, activating blood, removing stasis, warming meridians, dredging channels, and strengthening sinews and bones through adjusting the imbalance of "immune-inflammation", regulating nervous system, cell function, and interfering with substance and energy metabolism, thus improving the syndrome of internal obstruction and cold-dampness. The findings of this study laid foundations for clarifying the therapeutic characteristics and clinical orientation of Tianhe Zhuifeng Ointment.


Assuntos
Artrite Reumatoide , Medicamentos de Ervas Chinesas , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa , Pomadas , Convulsões , Síndrome
6.
Cytotherapy ; 23(7): 617-626, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33593687

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells and immunosuppressive factor IL-37 can both suppress concanavalin A (Con A)-induced hepatitis in mice. Endometrial regenerative cells (ERCs), novel types of mesenchymal-like stromal cells, possess powerful immunomodulatory effects and are effective in treating various diseases. The aim of this study was to explore the effects of ERCs in suppressing Con A-induced hepatitis and determine whether IL-37 overexpression could enhance the therapeutic effect of ERCs in this process. METHODS: ERCs were extracted from the menstrual blood of healthy female volunteer donors. The IL-37 gene was transferred into ERCs, and the expression of IL-37 in cells was detected by western blot and enzyme-linked immunosorbent assay. Hepatitis was induced by Con A in C57BL/6 mice that were randomly divided into groups treated with phosphate-buffered saline, ERCs, IL-37 or ERCs transfected with the IL-37 gene (IL-37-ERCs). Cell tracking, liver function, histopathological and immunohistological changes, immune cell proportions and levels of cytokines were measured 24 h after Con A administration. RESULTS: Compared with ERC or IL-37 treatment, IL-37-ERCs further reduced levels of liver enzymes (alanine aminotransferase and aspartate aminotransferase) and improved histopathological changes in the liver. In addition, IL-37-ERC treatment further reduced the proportions of M1 macrophages and CD4+ T cells and increased the proportion of regulatory T cells. Moreover, IL-37-ERC treatment resulted in lower levels of IL-12 and interferon gamma, and higher level of transforming growth factor beta. CONCLUSIONS: The results of this study suggest that ERCs can effectively alleviate Con A-induced hepatitis. Furthermore, IL-37 overexpression can significantly enhance the therapeutic efficacy of ERCs by augmenting the immunomodulatory and anti-inflammatory properties of ERCs. This study may provide a promising strategy for treatment of T-cell-dependent hepatitis.


Assuntos
Endométrio , Hepatite , Animais , Feminino , Camundongos , Concanavalina A , Citocinas , Fígado , Camundongos Endogâmicos C57BL , Humanos
7.
Biologicals ; 68: 112-121, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32928630

RESUMO

Influenza is an acute respiratory infection caused by the influenza virus, and vaccination against influenza is considered the best way to prevent the onset and spread. MDCK (Madin-Darby canine kidney) cells are typically used to isolate the influenza virus, however, their high tumorigenicity is the main controversy in the production of influenza vaccines. Here, MDCK-C09 and MDCK-C35 monoclonal cell lines were established, which were proven to be low in tumorigenicity. RNA-seq of MDCK-C09, MDCK-C35, and MDCK-W73 cells was performed to investigate the putative tumorigenicity mechanisms. Tumor-related molecular interaction analysis of the differentially expressed genes indicates that hub genes, such as CUL3 and EGFR, may play essential roles in tumorigenicity differences between MDCK-C (MDCK-C09 and MDCK-C35) and MDCK-W (MDCK-W73) cells. Moreover, the analysis of cell proliferation regulation-associated molecular interaction shows that downregulated JUN and MYC, for instance, mediate increased proliferation of these cells. The present study provides a new low-tumorigenic MDCK cell line and describes the potential molecular mechanism for the low tumorigenicity and high proliferation rate.


Assuntos
Transformação Celular Neoplásica/genética , Células Clonais/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Animais , Linhagem Celular , Células Clonais/virologia , Cães , Células HeLa , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Células Madin Darby de Rim Canino , Camundongos Nus , Cultura de Vírus/métodos
8.
Biotechnol Lett ; 42(8): 1317-1325, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32185620

RESUMO

OBJECTIVES: Marc-145 cells (monkey embryonic kidney epithelial cells) play a critical role in the biotechnology industry as certain virus host cells. To investigate the expression of enhanced green fluorescent protein (eGFP) gene as a foreign gene in Marc-145 cells, which we developed an approach of foreign gene site-specific knock-in into Marc-145 cells by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and putatively explored appropriate genomic recombination sites in Marc-145 cells. RESULTS: Our study demonstrated that the specific homologous recombination (HR) site between the Rac GTPase activating protein 1 (RACGAP1) and the acid-sensing ion channel subunit 1 (ASIC1) genes of the 11th chromosome could be used as the target site of Cas9 for the generation of target gene knock-in into Marc-145 cells, by the insertion of the eGFP cassette into the specific HR site and subsequent expression. CONCLUSIONS: Junction PCR, sequencing, Southern blot and fluorescence assay determined eGFP gene-specific knock-in HR site between the RACGAP1 and ASIC1 genes of the 11th chromosome, which was identified by the genomic safe harbours in Marc-145 cells. Our study encouraged a broader range of applications, such as Marc-145 cells development and engineering for virus adaption and yield increase in the vaccine biotechnology industry.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Introdução de Genes/métodos , Genes Reporter/genética , Recombinação Homóloga/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Basic Microbiol ; 60(5): 400-406, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32115741

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the pork industry. The present study showed that Yansuanmalingua (YASML) can inhibit type 2 PRRSV replication using plaque assay, quantitative reverse transcriptase-polymerase chain reaction, and immunofluorescence assay. Furthermore, inhibition of PRRSV replication was shown to be related to Toll-like receptor 3 (TLR3)-dependent apoptosis-induction by YASML in the PRRSV-infected MARC-145, and TLR3-dependent apoptosis-induction by YASML was found to suppress PRRSV replication via the activation of caspase-8 and caspase-3 pathways, respectively. Meanwhile, activation of the caspase-3 pathway seemed to be related to the downregulation of myeloid cell leukemia 1 (Mcl-1) expression. Our results showed that YASML-induced TLR3-dependent apoptosis could be blocked by a pan-caspase inhibitor and small interfering RNA against TLR3. In conclusion, the present study demonstrates that YASML exerts its anti-PRRSV effect by activating the caspase-8/caspase-3 signaling pathway and by negatively regulating Mcl-1 expression. These findings not only provide new insights into the molecular mechanism of YASML inhibition of PRRSV replication via the TLR3-dependent apoptosis pathway but also suggest potential, new antiviral drugs by expressing caspase-3 or down expressing Mcl-1.


Assuntos
Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Linhagem Celular , Chlorocebus aethiops , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Suínos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
10.
Cell Physiol Biochem ; 51(1): 173-185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30439714

RESUMO

Interferons (IFNs) can serve as the first line of immune defense against viral infection. The identification of IFN-λs 1, 2, 3 & 4 (termed as type III IFNs) has revealed that the antiviral immune response to viruses contains more components than the type I IFNs that have been known for more than 50 years. IFN-λs are IFN-λ1 (IL-29), IFN-λ2 (IL-28a), IFN-λ3 (IL-28b) and IFN-λ4, which resembles IFN-λ3. IFN-λs have type I-IFN-like immune responses and biological activities, but our knowledge of these novel players in the antiviral response is not well established. In this review, we try to describe the current information on the expression and function of IFN-λs in the innate antiviral immune defense and IFN-λ2's role in regulating and shaping the adaptive immune response. We suggest that IFN-λs are key antiviral cytokines, directly performing an antiviral immune response at epithelial surfaces in the early stages of viral infection, and that these cytokines also skew the balance of Th1 and Th2 cells to Th1 phenotype. In addition, genetic polymorphisms in IFN-λ genes can impair antiviral immune responses in clinical treatment.


Assuntos
Interferons/metabolismo , Viroses/imunologia , Imunidade Adaptativa , Animais , Humanos , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Viroses/metabolismo , Viroses/patologia , Interferon lambda
11.
Virol J ; 14(1): 38, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222746

RESUMO

BACKGROUND: Chicken anemia virus (CAV) causes anemia and immune suppression, which are important diseases in the poultry industry. CAV VP3, also referred as 'apoptin', has been shown to selectively kill tumor cells, raising great hopes for its utilization as an anticancer therapy. The ability of apoptin to induce apoptosis is closely related to its nuclear localization. The C-terminal region of apoptin contains a bipartite nuclear localization signals (NLS), and a nuclear export signal (NES) is located between the arms of the NLS. Most previous studies have expressed apoptin of different lengths in vitro to understand the relationship between its localization and its induction of apoptosis. METHODS: In this study, we investigated the replication of CAV and its induction of apoptosis in vitro and in vivo with VP3-truncated infectious virus. Quantitative PCR was used to detect viral replication in MDCC-MSB1 cells, and the viral localization was observed by confocal microscopy. Flow cytometry was uesed to analyze virus-induced apoptosis in MDCC-MSB1 cells. Additionally, chickens infected with the rescued viruses compared with the parental virus rM9905 to evaluate the viral replication in vivo and virulence. RESULTS: Based on the infectious clone, we rescued two viruses in which were deleted NES-NLS2 (rCAV-VP3N88) or NLS1-NES-NLS2 (rCAV-VP3N80) in the C-terminal region of apoptin. The viral load of rCAV-VP3N88 decreased significantly between 60 and 108 hpi, and was always 10-100-fold lower than that of the parental virus rM9905. The levels of rCAV-VP3N80 were also 10-100-fold lower than that of rM9905 and declined significantly at three time points. There was almost no difference in the viral loads of rCAV-VP3N88 and rCAV-VP3N80. Additionally, rM9905 induced 85.39 ± 2.18% apoptosis at 96 hpi, whereas rCAV-VP3N88 and rCAV-VP3N80 induced 63.08 ± 4.78% and 62.56 ± 7.35% apoptosis, respectively, which were significantly (about 20%) lower than that induced by the parental virus. The rescued viruses altered the nuclear localization in MDCC-MSB1 cells. Moreover, deletion of C-terminal region of apoptin impaired viral replication in vivo and reduced the virulence of CAV in chickens. CONCLUSIONS: In summary, we have demonstrated that the C-terminal deletion of apoptin in infectious CAV affected the replication of the virus. The deletion of the C-terminal region of apoptin not only significantly reduced viral replication in vitro but also reduced its induction of apoptosis, which correlated with the loss of its nuclear localization. The deletion of the C-terminal region of apoptin also impaired the replication of CAV and attenuated its virulence in chickens.


Assuntos
Apoptose , Proteínas do Capsídeo/genética , Vírus da Anemia da Galinha/fisiologia , Vírus da Anemia da Galinha/patogenicidade , Fatores de Virulência/genética , Replicação Viral , Transporte Ativo do Núcleo Celular , Animais , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Galinhas , Análise Mutacional de DNA , Citometria de Fluxo , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Virulência , Fatores de Virulência/metabolismo
12.
Protein Expr Purif ; 118: 70-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26500192

RESUMO

BACKGROUND: Plectasin might serve as a substitute for traditional antibiotics, but its yields and antimicrobial activities warrant further investigation. OBJECTIVE: To identify the influence of inducible versus constitutive expression of plectasin on yields and antimicrobial activities. METHODS: Through SOE-PCR, a recombinant plectasin gene was generated and inserted into inducible (pPICZαA) and constitutive (pGAPZαA) vectors in order to create Pichia pastoris GS115 strains. After 120 h of fermentation, supernatants were purified by an AKTA purifier using nickel columns. Minimal inhibitory concentration (MIC) and inhibition zone assays were performed after Tricine-SDS-PAGE. RESULTS: After 120 h of fermentation, the yield of constitutive plectasin (370 µg/ml) was much lower than that from inducible vector (880 µg/ml) (P < 0.05). However, constitutive strain reached its plateau phase faster and keep more consistent yield (P < 0.05). The MICs of inducible plectasin against Methicillin-resistant Staphylococcus aureus (MRSA) 15471118, vancomycin-resistant Enterococcus feces (VREF), and penicillin-resistant Streptococcus pneumonia (PRSP) 31355 were 64, 32, and 64 µg/ml, respectively, while those of constitutive plectasin were 4, 4, and 16 µg/ml. No significant differences were observed in antimicrobial activities between inducible and constitutive plectasin for MRSA 15471118, VREF and PRSP 31355 (all P ï¼ž 0.05). However, constitutive plectasin had a larger inhibition zone than inducible plectasin with the same mass. CONCLUSIONS: Although P. pastoris GS115 (pGAPZαA-Plectasin-GS115) had lower expression than P. pastoris GS115 (pPICZαA-plectasin-GS115), it reached the plateau phase faster, had steadier yields and showed superiority in antimicrobial activities. Therefore, pGAPZαA might be more suitable for expression of plectasin in GS115 compared with pPICZαA.


Assuntos
Antibacterianos/biossíntese , Peptídeos/genética , Peptídeos/metabolismo , Pichia/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , Pichia/classificação , Pichia/metabolismo
13.
Microb Pathog ; 82: 15-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773770

RESUMO

BACKGROUND: It is generally considered that HLA-Ⅱ genes contribute to the Helicobacter pylori (Hp) infection and disease development process. AIMS: To perform a meta-analysis to explore the relationship between HLA-Ⅱgene polymorphism and host susceptibility to Hp infection. METHODS: Relevant cohort studies, case-control studies and cross-sectional studies were identified by searching Cochrane Library, PubMed, EMBASE, Web of Science and CBM up to July 2014. The data were extracted and methodological quality of the studies were evaluated. RevMan5.0 software was used to perform statistical analysis. RESULTS: In Asian population, HLA-DQB1*0303 acted as the protective gene in Hp infection (statistically significant pooled OR = 0.54) and the susceptible genes in Hp infection involved HLA-DQB1*0401, HLA-DQA1*0103 and HLA-DQA1*0301 (statistically significant pooled OR and 95%CI were 3.34(1.93,5.77), 1.64(1.16,2.33) and 2.03(1.20,3.44) respectively). No statistically significant difference between DQB1*0303, HLA-DQA1*0103 and DQA1*0301 and Hp infection in European population (P>0.05). And no statistically significant difference (P>0.05) in the overall effect of the association between the rest of HLA-Ⅱalleles and Hp infection. CONCLUSIONS: In Asian population, the protective gene HLA-DQB1*0303 and the susceptible genes HLA-DQB1*0401, HLA-DQA1*0103 and HLA-DQA1*0301 in Hp infection were established by meta-analysis. And there was no HLA-Ⅱallele was found to associate with Hp infection among European population.


Assuntos
Resistência à Doença , Predisposição Genética para Doença , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/genética , Helicobacter pylori/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Polimorfismo Genético , Ásia/epidemiologia , Europa (Continente)/epidemiologia , Frequência do Gene , Humanos
14.
Animals (Basel) ; 14(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791620

RESUMO

During our collecting trip to Guangxi in 2016, we collected ten specimens of the genus Takydromus from the suburb of Guilin, northeastern Guangxi, South China, and found that they did not belong to any currently known species. Here, we described this new species, Takydromus guilinensis sp. nov., based on morphological and mitochondrial DNA (CO1 and cyt b) data. This new species is a sister taxon to T. intermedius with a p-distance of 0.070 in CO1 and 0.080 in cyt b. These two p-distances exceed not only the minimum value (0.067) between T. septentrionalis and T. stejnegeri but also the minimum value (0.079) between T. intermedius and T. yunkaiensis. Morphologically, this new species differs from other currently recognized Takydromus species from the same clade, more evidently in the longitudinal rows of dorsal scales, transverse rows of scales at the mid-body and mensural variables. The description of Takydromus guilinensis sp. nov. increases the total number of Takydromus species to 25, of which 16 can be found in China. Takydromus guilinensis sp. nov. is currently known only from Guilin, Guangxi, South China, where it is sympatric with the other four Takydromus species (T. septentrionalis, T. kuehnei, T. sexlineatus and T. intermedius).

15.
Vet Sci ; 10(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36977263

RESUMO

To analyze the intervention mechanism of polysaccharides from charred Angelica sinensis (CASP) on the liver injury caused by Ceftiofur sodium (CS) and lipopolysaccharide (LPS) from the perspective of the intestine. Ninety-four one-day-old laying chickens underwent free feeding and drinking water for three days. Then, fourteen laying chickens were randomly selected as the control group, and sixteen laying chickens were selected as the model group. Sixteen laying chickens in the rest were randomly selected as the intervention group of CASP. Chickens in the intervention group were given CASP by the oral administration (0.25 g/kg/d) for 10 days, the control and model groups were given the same amount of physiological saline. During the 8th and 10th days, laying chickens in the model and CASP intervention group were subcutaneously injected with CS at the neck. In contrast, those in the control group were subcutaneously injected with the same amount of normal saline simultaneously. Except for the control group, the layer chickens in the model and CASP intervention groups were injected with LPS after CS injection on the 10th day of the experiment. In contrast, those in the control group were injected with the same amount of normal saline at the same time. 48 h after the experiment, the liver samples of each group were collected, and the liver injury was analyzed by hematoxylin-eosin (HE) staining and transmission electron microscopy. And the cecum contents of six-layer chickens in each group were collected, and the intervention mechanism of CASP on the liver injury from the perspective of the intestine was analyzed by the 16S rDNA amplicon sequencing technology and the short-chain fatty acids (SCFAs) detection of cecal contents based on Gas Chromatography-Mass Spectrometry (GC-MS), and their association analysis was carried out. The results showed that the structure of chicken liver in the normal control group was normal, while that in the model group was damaged. The structure of chicken liver in the CASP intervention group was similar to the normal control group. The intestinal floras in the model group were maladjusted compared to the normal control group. After the intervention of CASP, the diversity, and richness of chicken intestinal floras changed significantly. It was speculated that the intervention mechanism of CASP on the chicken liver injury might be related to the abundance and proportion of Bacteroidetes and Firmicutes. Compared with the model group, the indexes of ace, chao1, observed species, and PD whole tree of chicken cecum floras in the intervention group of CASP were significantly increased (p < 0.05). The contents of acetic acid, butyric acid, and total SCFAs in the intervention group of CASP were significantly lower than those in the model group (p < 0.05), and the contents of propionic acid and valeric acid in the intervention group of CASP were significantly lower than those in the model group (p < 0.05) and normal control group (p < 0.05). The correlation analysis showed that the changes in the intestinal floras were correlated with the changes in SCFAs in the cecum. It is confirmed that the liver-protecting effect of CASP is indeed related to the changes in the intestinal floras and SCFAs content in the cecum, which provides a basis for screening liver-protecting alternative antibiotics products for poultry.

16.
Viruses ; 16(1)2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38257774

RESUMO

Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are the two most prevalent swine enteric coronaviruses worldwide. They commonly cause natural coinfections, which worsen as the disease progresses and cause increased mortality in piglets. To better understand the transcriptomic changes after PEDV and PDCoV coinfection, we compared LLC porcine kidney (LLC-PK) cells infected with PEDV and/or PDCoV and evaluated the differential expression of genes by transcriptomic analysis and real-time qPCR. The antiviral efficacy of interferon-stimulated gene 20 (ISG20) against PDCoV and PEDV infections was also assessed. Differentially expressed genes (DEGs) were detected in PEDV-, PDCoV-, and PEDV + PDCoV-infected cells at 6, 12, and 24 h post-infection (hpi), and at 24 hpi, the number of DEGs was the highest. Furthermore, changes in the expression of interferons, which are mainly related to apoptosis and activation of the host innate immune pathway, were found in the PEDV and PDCoV infection and coinfection groups. Additionally, 43 ISGs, including GBP2, IRF1, ISG20, and IFIT2, were upregulated during PEDV or PDCoV infection. Furthermore, we found that ISG20 significantly inhibited PEDV and PDCoV infection in LLC-PK cells. The transcriptomic profiles of cells coinfected with PEDV and PDCoV were reported, providing reference data for understanding the host response to PEDV and PDCoV coinfection.


Assuntos
Coinfecção , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Coinfecção/veterinária , Deltacoronavirus/genética , Perfilação da Expressão Gênica , Interferons/genética
17.
Virol Sin ; 37(3): 445-454, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35513267

RESUMO

African swine fever (ASF) is a highly pathogenic swine infectious disease that affects domestic pigs and wild boar, which is caused by the African swine fever virus (ASFV). ASF has caused huge economic losses to the pig industry and seriously threatens global food security and livestock health. To date, there is no safe and effective commercial vaccine against ASF. Unveiling the underlying mechanisms of ASFV-host interplay is critical for developing effective vaccines and drugs against ASFV. In the present study, RNA-sequencing, RT-qPCR and Western blotting analysis revealed that the transcriptional and protein levels of the host factor FoxJ1 were significantly down-regulated in primary porcine alveolar macrophages (PAMs) infected by ASFV. RT-qPCR analysis showed that overexpression of FoxJ1 upregulated the transcription of type I interferon and interferon stimulating genes (ISGs) induced by poly(dA:dT). FoxJ1 revealed a function to positively regulate innate immune response, therefore, suppressing the replication of ASFV. In addition, Western blotting analysis indicated that FoxJ1 degraded ASFV MGF505-2R and E165R proteins through autophagy pathway. Meanwhile, RT-qPCR and Western blotting analysis showed that ASFV S273R inhibited the expression of FoxJ1. Altogether, we determined that FoxJ1 plays an antiviral role against ASFV replication, and ASFV protein impairs FoxJ1-mediated antiviral effect by degradation of FoxJ1. Our findings provide new insights into the antiviral function of FoxJ1, which might help design antiviral drugs or vaccines against ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
18.
Front Cell Dev Biol ; 10: 700702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252164

RESUMO

Endotoxemia remains a major cause of mortality in the intensive care unit, but the therapeutic strategy is still lacking. Mesenchymal stem cell (MSC) was reported with a tissue-oriented differentiation ability and an excellent immunoregulatory capacity. However, the immunity signaling pathways that govern MSC modulation effect are not completely understood. In our current study, MSCs (2.5 × 105 /ml) were obtained and stimulated with IFN-γ (20 ng/ml) for 72 h. Gal-9 expression on MSCs was measured by ELISA, RT-PCR, flow cytometry, and immunofluorescence, respectively. Experimental endotoxemia was induced by LPS injection (10 mg/kg, i. p.) followed by the treatment with Gal-9 high-expressing MSCs, unmodified MSCs, and Gal-9 blocking MSCs. Therapeutic effects of MSCs were assessed by monitoring murine sepsis score, survival rate, splenocyte proportion rate, inflammatory mediator levels, and pathological manifestations. The results showed that Gal-9 expressed in MSCs, and this expression was increased in a dose-dependent manner after pre-stimulating with IFN-γ. Adoptive transfer of Gal-9 high-expressing MSCs into modeling mice significantly alleviated endotoxemia symptoms and multi-organ pathological damages. Splenocyte analysis indicated that Gal-9 high-expressing MSCs could promote macrophage polarization to M2-subtype and boost Treg generation. Moreover, there were also attenuated pro-inflammatory mediator expressions (TNF-α, IL-1ß, IFN-γ, and iNOS), and increased anti-inflammatory mediator expressions (T-SOD and IL-35) in the sera and damaged organ homogenates. Additionally, we found a higher expression of Gal-9 in liver, lung, and kidney homogenate. Taken together, this study reveals that the optimized immunoregulatory effect of MSCs is strongly correlated with Gal-9 high expression, which provides a novel idea for the investigation of MSC immunomodulatory mechanisms and offers a potential strategy for the treatment of endotoxemia in clinical settings.

19.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432220

RESUMO

The successful development of foot-and-mouth disease virus-like particles (FMD-VLPs) has opened a new direction for researching a novel subunit vaccine for foot-and-mouth disease (FMD). Therefore, it is urgent to develop an adjuvant that is highly effective and safe to facilitate a better immune response to be pair with the FMD-VLP vaccine. In this research, we prepared a new nano-emulsion adjuvant based on squalane (SNA) containing CpG using the pseudo-ternary phase diagram method and the phase transformation method. The SNA consisted of Span85, Tween60, squalane, polyethene glycol-400 (PEG400) and CpG aqueous solution. The average particle diameter of the SNA was about 95 nm, and it exhibited good resistance to centrifugation, thermal stability, and biocompatibility. Then, SNA was emulsified as an adjuvant to prepare foot-and-mouth disease virus-like particles vaccine, BALB/c mice and guinea pigs were immunized, and we evaluated the immunization effect. The immunization results in mice showed that the SNA-VLPs vaccine significantly increased specific antibody levels in mice within 4 weeks, including higher levels of IgG1 and IgG2a. In addition, it increased the levels of IFN-γ and IL-1ß in the immune serum of mice. Meanwhile, guinea pig-specific and neutralizing antibodies were considerably increased within 4 weeks when SNA was used as an adjuvant, thereby facilitating the proliferation of splenic lymphocytes. More importantly, in guinea pigs immunized with one dose of SNA-VLPs, challenged with FMDV 28 days after immunization, the protection rate can reach 83.3%, which is as high as in the ISA-206 control group. In conclusion, the novel squalane nano-emulsion adjuvant is an effective adjuvant for the FMD-VLPs vaccine, indicating a promising adjuvant for the future development of a novel FMD-VLPs vaccine.

20.
Front Vet Sci ; 9: 951058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968012

RESUMO

Melophagus ovinus disease is a common ectoparasitosis, which can lead to a decrease in animal production performance, product quality, and even death. Aconitum flavum Hand.-Mazz. has many pharmacological activities including insecticidal, heat-clearing, analgesic, and dehumidifying. However, there are few researches focused on the effects and related mechanism of Aconitum flavum Hand.-Mazz. in killing Melophagus ovinus. In this study, 11 alkaloids of Aconitum flavum Hand.-Mazz. were detected, and its total alkaloid activity was determined. The results showed when the total alkaloid concentration was 64 mg/ml and the treatment time was 16 h, the killing rate of Melophagus ovinus reached 100%. Through the observation of the differences in the surface of Melophagus ovinus in each experimental group, it was found that the morphology of the posterior end of the female Melophagus ovinus in the alkaloid treatment group was significantly different from that of the blank and positive control groups, and most of the epidermal tissue was obsessive and missing. Moreover, the enzyme activity determination results of 64 mg/ml group were significantly different when compared with the normal control group, while there was no significant difference in other groups. Then, the Melophagus ovinus gene library was established by the unreferenced genome transcriptome sequencing, the proteomic comparison was performed using tandem mass tag labeled protein detection technology, and finally, the samples were quantitatively analyzed by liquid chromatography-mass spectrometry tandem and bioinformatics methods. Based on the above experimental results, it was speculated that Aconitum flavum Hand.-Mazz. total alkaloids may cause the imbalance of protein disulfide isomerase expressions by affecting the regulation of Hsp40 cellular protein homeostasis and the oxidation of protein disulfide isomerase and related proteins. This would affect the selective recognition of signal sequence, the targeted transport of Sec 61, and the correct folding of the three-dimensional structure of amino acid chain, weakening the clearance of amino acid chains that cannot be correctly folded and eventually resulting in the killing of Melophagus ovinus. This study preliminarily revealed the mechanism of Aconitum flavum Hand.-Mazz. total alkaloids against Melophagus ovinus and provided a theoretical basis for the screening of Melophagus ovinus action targets and the development of new veterinary drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA