Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Hum Brain Mapp ; 44(16): 5387-5401, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37605831

RESUMO

Gene expression plays a critical role in the pathogenesis of Parkinson's disease (PD). How gene expression profiles are correlated with functional-metabolic architecture remains obscure. We enrolled 34 PD patients and 25 age-and-sex-matched healthy controls for simultaneous 18 F-FDG-PET/functional MRI scanning during resting state. We investigated the functional gradients and the ratio of standard uptake value. Principal component analysis was used to further combine the functional gradients and glucose metabolism into functional-metabolic architecture. Using partial least squares (PLS) regression, we introduced the transcriptomic data from the Allen Institute of Brain Sciences to identify gene expression patterns underlying the affected functional-metabolic architecture in PD. Between-group comparisons revealed significantly higher gradient variation in the visual, somatomotor, dorsal attention, frontoparietal, default mode, and subcortical network (pFDR < .048) in PD. Increased FDG-uptake was found in the somatomotor and ventral attention network while decreased FDG-uptake was found in the visual network (pFDR < .008). Spatial correlation analysis showed consistently affected patterns of functional gradients and metabolism (p = 2.47 × 10-8 ). PLS analysis and gene ontological analyses further revealed that genes were mainly enriched for metabolic, catabolic, cellular response to ions, and regulation of DNA transcription and RNA biosynthesis. In conclusion, our study provided genetic pathological mechanism to explain imaging-defined brain functional-metabolic architecture of PD.


Assuntos
Fluordesoxiglucose F18 , Doença de Parkinson , Humanos , Fluordesoxiglucose F18/metabolismo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Encéfalo/patologia , Neuroimagem , Imageamento por Ressonância Magnética , Expressão Gênica
2.
Cereb Cortex ; 32(4): 824-838, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383018

RESUMO

Sleep deprivation (SD) causes deficits in off-line memory consolidation, but the underlying network oscillation mechanisms remain unclear. Hippocampal sharp wave ripple (SWR) oscillations play a critical role in off-line memory consolidation. Therefore, we trained mice to learn a hippocampus-dependent trace eyeblink conditioning (tEBC) task and explored the influence of 1.5-h postlearning SD on hippocampal SWRs and related spike dynamics during recovery sleep. We found an increase in hippocampal SWRs during postlearning sleep, which predicted the consolidation of tEBC in conditioned mice. In contrast, sleep-deprived mice showed a loss of tEBC learning-induced increase in hippocampal SWRs during recovery sleep. Moreover, the sleep-deprived mice exhibited weaker reactivation of tEBC learning-associated pyramidal cells in hippocampal SWRs during recovery sleep. In line with these findings, tEBC consolidation was impaired in sleep-deprived mice. Furthermore, sleep-deprived mice showed augmented fast excitation from pyramidal cells to interneurons and enhanced participation of interneurons in hippocampal SWRs during recovery sleep. Among various interneurons, parvalbumin-expressing interneurons specifically exhibited overexcitation during hippocampal SWRs. Our findings suggest that altered hippocampal SWRs and associated spike dynamics during recovery sleep may be candidate network oscillation mechanisms underlying SD-induced memory deficits.


Assuntos
Hipocampo , Privação do Sono , Animais , Hipocampo/fisiologia , Camundongos , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Sono
3.
Mol Psychiatry ; 26(10): 5568-5577, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681097

RESUMO

It is traditionally believed that cerebral amyloid-beta (Aß) deposits are derived from the brain itself in Alzheimer's disease (AD). Peripheral cells such as blood cells also produce Aß. The role of peripherally produced Aß in the pathogenesis of AD remains unknown. In this study, we established a bone marrow transplantation model to investigate the contribution of blood cell-produced Aß to AD pathogenesis. We found that bone marrow cells (BMCs) transplanted from APPswe/PS1dE9 transgenic mice into wild-type (Wt) mice at 3 months of age continuously expressed human Aß in the blood, and caused AD phenotypes including Aß plaques, cerebral amyloid angiopathy (CAA), tau hyperphosphorylation, neuronal degeneration, neuroinflammation, and behavioral deficits in the Wt recipient mice at 12 months after transplantation. Bone marrow reconstitution in APPswe/PS1dE9 mice with Wt-BMCs at 3 months of age reduced blood Aß levels, and alleviated brain Aß burden, neuronal degeneration, neuroinflammation, and behavioral deficits in the AD model mice at 12 months after transplantation. Our study demonstrated that blood cell-produced Aß plays a significant role in AD pathogenesis, and the elimination of peripheral production of Aß can decrease brain Aß deposition and represents a novel therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Sanguíneas/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
4.
Acta Neuropathol ; 134(2): 207-220, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28477083

RESUMO

Clearance of amyloid-beta (Aß) from the brain is an important therapeutic strategy for Alzheimer's disease (AD). Current studies mainly focus on the central approach of Aß clearance by introducing therapeutic agents into the brain. In a previous study, we found that peripheral tissues and organs play important roles in clearing brain-derived Aß, suggesting that the peripheral approach of removing Aß from the blood may also be effective for AD therapy. Here, we investigated whether peritoneal dialysis, a clinically available therapeutic method for chronic kidney disease (CKD), reduces brain Aß burden and attenuates AD-type pathologies and cognitive impairments. Thirty patients with newly diagnosed CKD were enrolled. The plasma Aß concentrations of the patients were measured before and after peritoneal dialysis. APP/PS1 mice were subjected to peritoneal dialysis once a day for 1 month from 6 months of age (prevention study) or 9 months of age (treatment study). The Aß in the interstitial fluid (ISF) was collected using microdialysis. Behavioural performance, long-term potentiation (LTP), Aß burden and other AD-type pathologies were measured after 1 month of peritoneal dialysis. Peritoneal dialysis significantly reduced plasma Aß levels in both CKD patients and APP/PS1 mice. Aß levels in the brain ISF of APP/PS1 mice immediately decreased after reduction of Aß in the blood during peritoneal dialysis. In both prevention and treatment studies, peritoneal dialysis substantially reduced Aß deposition, attenuated other AD-type pathologies, including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, and synaptic dysfunction, and rescued the behavioural deficits of APPswe/PS1 mice. Importantly, the Aß phagocytosis function of microglia was enhanced in APP/PS1 mice after peritoneal dialysis. Our study suggests that peritoneal dialysis is a promising therapeutic method for AD, and Aß clearance using a peripheral approach could be a desirable therapeutic strategy for AD.


Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/sangue , Diálise Peritoneal/métodos , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/sangue , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/fisiologia , Ácido Aspártico Endopeptidases/sangue , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Humanos , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Presenilina-1/genética , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/terapia
5.
Cerebellum ; 13(1): 64-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24013852

RESUMO

Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.


Assuntos
Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Córtex Pré-Frontal/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Piscadela/efeitos dos fármacos , Piscadela/fisiologia , Cerebelo/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Cobaias , Masculino , Antagonistas Muscarínicos/farmacologia , Muscimol/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ponte/efeitos dos fármacos , Ponte/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores Muscarínicos/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Escopolamina/farmacologia
6.
Environ Res ; 135: 236-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25462671

RESUMO

Previous studies have revealed that extremely low frequency electromagnetic field (ELF-EMF) exposure affects neuronal dendritic spine density and NMDAR and AMPAR subunit expressions in the entorhinal cortex (EC). Although calcium signaling has a critical role in control of EC neuronal functions, however, it is still unclear whether the ELF-EMF exposure affects the EC neuronal calcium homeostasis. In the present study, using whole-cell recording and calcium imaging, we record the whole-cell inward currents that contain the voltage-gated calcium currents and show that ELF-EMF (50Hz, 1mT or 3mT, lasting 24h) exposure does not influence these currents. Next, we specifically isolate the high-voltage activated (HVA) and low-voltage activated (LVA) calcium channels-induced currents. Similarly, the activation and inactivation characteristics of these membrane calcium channels are also not influenced by ELF-EMF. Importantly, ELF-EMF exposure reduces the maximum amplitude of the high-K(+)-evoked calcium elevation in EC neurons, which is abolished by thapsigargin, a Ca(2+) ATPase inhibitor, to empty the intracellular calcium stores of EC neurons. Together, these findings indicate that ELF-EMF exposure specifically influences the intracellular calcium dynamics of cultural EC neurons via a calcium channel-independent mechanism.


Assuntos
Cálcio/metabolismo , Campos Eletromagnéticos/efeitos adversos , Córtex Entorrinal/citologia , Neurônios/metabolismo , Análise de Variância , Animais , Canais de Cálcio/metabolismo , Córtex Entorrinal/efeitos da radiação , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
7.
Research (Wash D C) ; 7: 0355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694202

RESUMO

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

8.
Neurosci Bull ; 37(8): 1147-1159, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33991316

RESUMO

While the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


Assuntos
Condicionamento Palpebral , Animais , Piscadela , Condicionamento Clássico , Hipocampo , Interneurônios , Camundongos , Células Piramidais
9.
Nat Commun ; 11(1): 4910, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978405

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Commun ; 11(1): 3661, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694504

RESUMO

The relationship between orexin/hypocretin and rapid eye movement (REM) sleep remains elusive. Here, we find that a proportion of orexin neurons project to the sublaterodorsal tegmental nucleus (SLD) and exhibit REM sleep-related activation. In SLD, orexin directly excites orexin receptor-positive neurons (occupying ~3/4 of total-population) and increases gap junction conductance among neurons. Their interaction spreads the orexin-elicited partial-excitation to activate SLD network globally. Besides, the activated SLD network exhibits increased probability of synchronized firings. This synchronized excitation promotes the correspondence between SLD and its downstream target to enhance SLD output. Using optogenetics and fiber-photometry, we consequently find that orexin-enhanced SLD output prolongs REM sleep episodes through consolidating brain state activation/muscle tone inhibition. After chemogenetic silencing of SLD orexin signaling, a ~17% reduction of REM sleep amounts and disruptions of REM sleep muscle atonia are observed. These findings reveal a stabilization role of orexin in REM sleep.


Assuntos
Tronco Encefálico/fisiologia , Orexinas/metabolismo , Privação do Sono/fisiopatologia , Sono REM/fisiologia , Potenciais de Ação/fisiologia , Animais , Comportamento Animal , Tronco Encefálico/citologia , Modelos Animais de Doenças , Eletrodos Implantados , Eletroencefalografia , Eletromiografia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tono Muscular/fisiologia , Neurônios/metabolismo , Optogenética , Receptores de Orexina/metabolismo , Orexinas/genética , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Vigília/fisiologia
11.
J Neurosci ; 28(12): 3202-8, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18354023

RESUMO

Our previous observations showed that several stimuli, including high-K(+) solution, glutamate, and voltage pulses, induce somatic noradrenaline (NA) secretion from locus ceruleus (LC) neurons. Hypocretin (orexin), a hypothalamic peptide critical for normal wakefulness, has been shown to evoke NA release from the axon terminals of LC neurons. Here, we used amperometry to test the effect of hypocretin-1 (HCRT) on NMDA receptor-mediated somatodendritic release in LC neurons. Either HCRT or NMDA applied alone dose-dependently induced somatodendritic secretion. Bath application of HCRT notably potentiated NMDA receptor-mediated somatodendritic NA release. This potentiation was blocked by SB 334867, a selective HCRT receptor (Hcrtr 1) antagonist, or bisindolylmaleimide, a specific protein kinase C (PKC) inhibitor, indicating the involvement of Hcrtr 1 and PKC. Consistent with this, phorbol 12-myristate 13-acetate, a PKC activator, mimicked the HCRT-induced potentiation. Furthermore, HCRT enhanced NMDA-induced intracellular Ca(2+) elevation via activation of Hcrtr 1 and PKC, which may contribute to HCRT-potentiated somatodendritic secretion. These results suggest that HCRT modulates LC activity not only by regulating noradrenergic input to its targets, but also by affecting noradrenergic communication in the soma and dendrites.


Assuntos
Dendritos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Locus Cerúleo/citologia , Neurônios/citologia , Neuropeptídeos/farmacologia , Neurotransmissores/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Dendritos/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , N-Metilaspartato/farmacologia , Orexinas , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
12.
J Neurosci Res ; 87(12): 2667-76, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19396875

RESUMO

Several studies have shown that astrocytes release neurotransmitters into the extracellular space that may then activate receptors on nearby neurons. In the present study, the actions of adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS)-activated astrocyte conditioned medium (ADPbetaS-ACM) on cultured dorsal spinal cord neurons were evaluated by using confocal laser scanning microscopy and whole-cell patch-clamp recording. ADPbetaS caused astrocytic glutamate efflux (43 microM), which in turn induced inward currents in dorsal horn neurons with short time in culture. The inward currents were abolished by 2-amino-5-phosphonlanoicacid (AP-5; NMDAR antagonist) plus 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDAR antagonist) but were unaffected by MRS2179 (selective P2Y(1) receptor antagonist). Furthermore, N6-methyl-2'-deoxyadenosine-3',5'-bisphosphate (MRS2179) was used to block glutamate release from astrocytes. As a result, ADPbetaS-ACM-induced inward currents in neurons were significantly blocked. On the other hand, both NMDAR and non-NMDAR were involved in ADPbetaS-ACM (concentration was diluted to one-tenth)-evoked small [Ca(2+)](i) transients in neurons. Under this condition, the values of glutamate concentrations in the medium are close to values for extracellular glutamate concentrations under physiological conditions. For this reason, it is possible that astrocyte-derived glutamate is important for distant neuron under physiological conditions at dorsal spinal cord. These observations indicate that astrocytic P2Y(1) receptor activation triggered glutamate efflux, which acts on distant neurons to elevate calcium levels or acts on nearby neurons to evoke inward current. Finally, our results support the conclusion that the astrocytic P2Y(1) receptor plays an important role in bidirectional communication between astrocytes and neurons.


Assuntos
Astrócitos/metabolismo , Células do Corno Posterior/metabolismo , Receptores de Glutamato/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Microscopia Confocal , Técnicas de Patch-Clamp , Células do Corno Posterior/citologia , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/efeitos dos fármacos , Receptores Purinérgicos P2/efeitos dos fármacos , Receptores Purinérgicos P2Y1 , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tionucleotídeos/farmacologia
13.
Dalton Trans ; 48(28): 10393-10397, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31162516

RESUMO

Silver nanoparticles (AgNPs) modified by luminescent Ru(ii) complexes not only possess bright red fluorescence but also can target lysosomes. Cell imaging and a cytotoxicity study suggest that Ru1-2·AgNPs may act as a potential theranostic agent.


Assuntos
Luminescência , Nanopartículas Metálicas/química , Rutênio/farmacologia , Prata/farmacologia , Compostos de Sulfidrila/farmacologia , Nanomedicina Teranóstica , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Imagem Óptica , Tamanho da Partícula , Rutênio/química , Prata/química , Compostos de Sulfidrila/química , Propriedades de Superfície
14.
Neurosci Lett ; 436(2): 181-4, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18395341

RESUMO

Orexins have been shown to be implicated in the regulation of adrenal medulla functions. However, there are still inconsistent investigations on the effects of orexins on catecholamine release from chromaffin cells in varying species. In the present study, using the carbon-fiber amperometry, we investigated whether orexin A would stimulate catecholamine release from rat and mouse adrenal chromffin cells. Puff application of orexin A dose-dependently induced amperometric currents in the cultured rat chromaffin cells, which was completely blocked by the selective OX1R antagonist SB-334867 or by the removal of extracellular calcium. Likewise, in the mouse adrenal medulla slices, orexin A also induced catecholamine release mainly through the activation of OX1R. These results gain insight into our understanding of the pharmacological relevance of orexin system in modulating neuroendocrine functions.


Assuntos
Glândulas Suprarrenais/citologia , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/farmacologia , Simpatomiméticos/farmacologia , Animais , Benzoxazóis/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Eletroquímica/métodos , Naftiridinas , Orexinas , Potássio/farmacologia , Ratos , Ureia/análogos & derivados , Ureia/farmacologia
17.
Neurosci Lett ; 399(1-2): 101-5, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16495001

RESUMO

It is widely known that hypocretins are essential for the regulation of wakefulness. Our recent reports have found that hypocretin-1 shows a direct postsynaptic excitatory effect on rat prefrontal cortex (PFC) pyramidal neurons. It remains unclear whether hypocretin-1 may interact with two classical neurotransmitter systems, glutamate and gamma-aminobutyric acid (GABA) in rat PFC. For this reason, we here investigated the modulatory actions of hypocretin-1 with these two transmitters on freshly isolated PFC pyramidal neurons using whole-cell patch-clamp recordings. We found that coadministration of hypocretin-1 and glutamate showed a synergistic effect on the recorded cells, and hypocretin-1 could excite the neurons even if GABA was present. Thus, our data suggest that there may be hypocretin-glutamate and hypocretin-GABA interactions in the PFC.


Assuntos
Lobo Frontal/fisiologia , Ácido Glutâmico/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neuropeptídeos/fisiologia , Células Piramidais/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação , Animais , Lobo Frontal/citologia , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/farmacologia , Orexinas , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/farmacologia
18.
Sci Rep ; 6: 20960, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879632

RESUMO

Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0-12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization.


Assuntos
Cerebelo/fisiologia , Condicionamento Clássico , Aprendizagem , Córtex Pré-Frontal/fisiologia , Ritmo Teta , Animais , Comportamento Animal , Cobaias , Masculino , Desempenho Psicomotor
19.
Mol Neurobiol ; 53(10): 7089-7106, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26676573

RESUMO

The central noradrenergic system participates in diverse nervous functions. Nevertheless, our knowledge of the action of adrenoceptors in motor regulation is still lacking. Intriguingly, reticulospinal neurons in the caudal pontine reticular nucleus (PnC) receive fairly dense noradrenergic innervation and play an important role in motor control. Here, after demonstrating the expression of α1- and α2-adrenoceptors in the PnC, we found that noradrenaline elicited a post-synaptic effect (inward or outward whole-cell current at -70 mV holding) on PnC reticulospinal neurons. The α1- and α2-adrenoceptors were co-expressed in individual PnC reticulospinal neurons to mediate an inward and an outward current component at -70 mV holding, respectively, which, when superposed, produced the overall post-synaptic effects of noradrenaline (NA). More importantly, the activation of post-synaptic α1- or α2-adrenoceptors indeed exerted opposing modulations (excitation vs. inhibition) on the firing activities of individual PnC reticulospinal neurons. Furthermore, the activation and inhibition of the Na+-permeable non-selective cationic conductance (NSCC) were demonstrated to be coupled to α1- and α2-adrenoceptors, respectively. Additionally, the activation of α2-adrenoceptors activated K+ conductance. Pre-synaptically, the α2-adrenoceptors were expressed to attenuate the miniature excitatory postsynaptic current (mEPSC) in PnC reticulospinal neurons, but not to affect the miniature inhibitory postsynaptic current (mIPSC). Consistently, the evoked EPSC in PnC reticulospinal neurons was suppressed after the activation of pre-synaptic α2-adrenoceptors. Thus, the excitatory input and post-synaptic dynamics of PnC reticulospinal neurons are indeed intricately modulated by the activation of α1- and α2-adrenoceptors, through which motor control may be regulated in an adaptive manner by the central noradrenergic system.


Assuntos
Tronco Encefálico/metabolismo , Neurônios/metabolismo , Receptores Adrenérgicos/metabolismo , Sinapses/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Norepinefrina/farmacologia , Ratos Sprague-Dawley , Sódio/metabolismo , Sinapses/efeitos dos fármacos
20.
Neuroreport ; 16(7): 783-6, 2005 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-15858425

RESUMO

We have investigated the effect of orexin A on the intracellular free calcium concentration ([Ca2+]i) in primary cultured cortical neurons and explored the exact mechanisms of orexin A-evoked changes of [Ca2+]i. In the present study, changes of [Ca2+]i induced by orexin A in primary cultured cortical neurons were first detected by confocal laser scanning microscopy using Ca2+-sensitive dye fluo-4 as a novel calcium fluorescent probe. Our results showed that 1-0.1 microM orexin A induced the increase in [Ca2+]i in cortical neurons. The increase in [Ca2+]i by acute application of orexin A occurred in a dose-dependent manner. Orexin A-induced increase in [Ca2+]i was not observed under the condition of Ca2+-free Dulbecco's modified Eagle's medium. Pretreatment on the cells with 1 microM thapsigargin did not block orexin A-evoked response. These findings first illuminated the fact that orexin A-induced increase in [Ca2+]i may be mainly from extracellular calcium influx in cortical neurons.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/citologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/farmacologia , Compostos de Anilina , Animais , Animais Recém-Nascidos , Células Cultivadas , Corantes Fluorescentes , Microscopia Confocal , Orexinas , Ratos , Ratos Wistar , Vigília/fisiologia , Xantenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA